cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 48 results. Next

A249344 A(n,k) = exponent of the largest power of n-th prime which divides k, square array read by antidiagonals.

Original entry on oeis.org

0, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Antti Karttunen, Oct 28 2014

Keywords

Comments

Square array A(n,k), where n = row, k = column, read by antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ... (transpose of array A060175).
A(n,k) is the (p_n)-adic valuation of k, where p_n is the n-th prime, A000040(n).
Each row is effectively a ruler function, s, with s(1) = 0. - Peter Munn, Apr 30 2022

Examples

			The top-left corner of the array:
  0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, ...
  0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, ...
  0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, ...
  0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, ...
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, ...
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, ...
  ...
A(1,8) = 3, because 2^3 is the largest power of 2 (= p_1 = A000040(1)) that divides 8.
a(2,9) = 2, because 3^2 is the largest power of 3 (= p_2) that divides 9.
a(3,15) = 1, because 5^1 is the largest power of 5 (= p_3) that divides 15.
		

Crossrefs

Transpose: A060175.
Row 1: A007814.
Row 2: A007949.
Row 3: A112765.
Row 4: A214411.
Completely additive sequences where more than one prime is mapped to 1, all other primes to 0: A065339, A083025, A087436, A169611.
Ruler functions, s, with s(1) = 0 that are not rows here: A122840, A122841, A235127, A244413.

Programs

  • Mathematica
    A[n_, k_] := IntegerExponent[k, Prime[n]]; Table[A[k, n - k + 1], {n, 1, 15}, {k, 1, n}] // Flatten (* Amiram Eldar, Oct 01 2023 *)
  • PARI
    a(n, k) = valuation(k, prime(n)); \\ Michel Marcus, Jun 24 2017
  • Python
    from sympy import prime
    def a(n, k):
        p=prime(n)
        i=z=0
        while p**i<=k:
            if k%(p**i)==0: z=i
            i+=1
        return z
    for n in range(1, 10): print([a(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Jun 24 2017
    
  • Scheme
    (define (A249344 n) (A249344bi (A002260 n) (A004736 n)))
    (define (A249344bi row col) (let ((p (A000040 row))) (let loop ((n col) (i 0)) (cond ((not (zero? (modulo n p))) i) (else (loop (/ n p) (+ i 1)))))))
    

Formula

Row n, as a sequence, is completely additive with A(n, prime(n)) = 1, A(n, prime(m)) = 0 for m <> n. - Peter Munn, Apr 30 2022
Sum_{k=1..m} A(n,k) ~ (1/(prime(n)-1)) * m. - Amiram Eldar, Oct 01 2023

A102679 Number of digits >= 7 in decimal representation of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 0, 0, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Feb 03 2005

Keywords

Comments

a(n) = 0 iff n is in A007093 (numbers in base 7). - Bernard Schott, Feb 12 2023

Crossrefs

Programs

  • Maple
    p:=proc(n) local b,ct,j: b:=convert(n,base,10): ct:=0: for j from 1 to nops(b) do if b[j]>=7 then ct:=ct+1 else ct:=ct fi od: ct: end: seq(p(n),n=0..125); # Emeric Deutsch, Feb 23 2005

Formula

From Hieronymus Fischer, Jun 10 2012: (Start)
a(n) = Sum_{j=1..m+1} (floor(n/10^j + 3/10) - floor(n/10^j)), where m = floor(log_10(n)).
G.f.: g(x) = (1/(1-x))*Sum_{j>=0} (x^(7*10^j) - x^(10*10^j))/(1 - x^10^(j+1)). (End)

Extensions

More terms from Emeric Deutsch, Feb 23 2005

A102681 Number of digits >= 8 in decimal representation of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 0, 0, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Feb 03 2005

Keywords

Comments

a(n) = 0 iff n is in A007094 (numbers in base 8). - Bernard Schott, Feb 18 2023

Crossrefs

Programs

  • Maple
    p:=proc(n) local b,ct,j: b:=convert(n,base,10): ct:=0: for j from 1 to nops(b) do if b[j]>=8 then ct:=ct+1 else ct:=ct fi od: ct: end: seq(p(n),n=0..120); # Emeric Deutsch, Feb 23 2005

Formula

From Hieronymus Fischer, Jun 10 2012: (Start)
a(n) = Sum_{j=1..m+1} (floor(n/10^j + 1/5) - floor(n/10^j)), where m = floor(log_10(n)).
G.f.: g(x) = (1/(1-x))*Sum_{j>=0} (x^(8*10^j) - x^(10*10^j))/(1 - x^10^(j+1)). (End)

Extensions

More terms from Emeric Deutsch, Feb 23 2005

A102677 Number of digits >= 6 in decimal representation of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 0, 0, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Feb 03 2005

Keywords

Comments

a(n) = 0 iff n is in A007092 (numbers in base 6). - Bernard Schott, Feb 02 2023

Crossrefs

Programs

  • Maple
    p:=proc(n) local b,ct,j: b:=convert(n,base,10): ct:=0: for j from 1 to nops(b) do if b[j]>=6 then ct:=ct+1 else ct:=ct fi od: ct: end: seq(p(n),n=0..116); # Emeric Deutsch, Feb 23 2005
  • Mathematica
    Table[Total@ Take[Most@ DigitCount@ n, -4], {n, 0, 104}] (* Michael De Vlieger, Aug 17 2017 *)

Formula

From Hieronymus Fischer, Jun 10 2012: (Start)
a(n) = Sum_{j=1..m+1} (floor(n/10^j + 2/5) - floor(n/10^j)), where m = floor(log_10(n)).
G.f.: g(x) = (1/(1-x))*Sum_{j>=0} (x^(6*10^j) - x^(10*10^j))/(1-x^10^(j+1)). (End)

Extensions

More terms from Emeric Deutsch, Feb 23 2005

A214855 Fibonacci numbers divisible by 10.

Original entry on oeis.org

0, 610, 832040, 1134903170, 1548008755920, 2111485077978050, 2880067194370816120, 3928413764606871165730, 5358359254990966640871840, 7308805952221443105020355490, 9969216677189303386214405760200, 13598018856492162040239554477268290
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 08 2013

Keywords

Comments

Fibonacci numbers having a trailing zero in decimal representation.
A122840(a(n)) > 0.

Crossrefs

Cf. A008597.

Programs

  • Haskell
    a214855 = a000045 . a008597 . subtract 1

Formula

a(n) = A000045(15*(n-1)).
G.f.: -610*x^2 / (x^2+1364*x-1). - Colin Barker, Mar 12 2013

Extensions

New name from T. D. Noe, Mar 09 2013

A102684 Number of times the digit 9 appears in the decimal representations of all integers from 0 to n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20
Offset: 0

Views

Author

N. J. A. Sloane, Feb 03 2005

Keywords

Comments

This is the total number of digits = 9 occurring in all the numbers 0, 1, 2, ... n (in decimal representation). - Hieronymus Fischer, Jun 10 2012

Crossrefs

Programs

  • Maple
    p:=proc(n) local b,ct,j: b:=convert(n,base,10): ct:=0: for j from 1 to nops(b) do if b[j]>=9 then ct:=ct+1 else ct:=ct fi od: ct: end: seq(add(p(i),i=0..n), n=0..105); # Emeric Deutsch, Feb 23 2005
  • Mathematica
    Accumulate[DigitCount[Range[0,100],10,9]] (* Harvey P. Dale, Mar 30 2018 *)
  • PARI
    a(n) = sum(k=0, n, #select(x->(x==9), digits(k))); \\ Michel Marcus, Oct 03 2023

Formula

From Hieronymus Fischer, Jun 10 2012: (Start)
a(n) = (1/2)*Sum_{j=1..m+1} (floor(n/10^j + 1/10)*(2n + 2 - (4/5 + floor(n/10^j + 1/10))*10^j) - floor(n/10^j)*(2n + 2 - (1+floor(n/10^j)) * 10^j)), where m = floor(log_10(n)).
a(n) = (n+1)*A102683(n) + (1/2)*Sum_{j=1..m+1} ((-4/5*floor(n/10^j + 1/10) + floor(n/10^j))*10^j - (floor(n/10^j + 1/10)^2 - floor(n/10^j)^2)*10^j), where m = floor(log_10(n)).
a(10^m-1) = m*10^(m-1).
(this is total number of digits = 9 occurring in all the numbers with <= m places).
G.f.: g(x) = (1/(1-x)^2)*Sum_{j>=0} (x^(9*10^j) - x^(10*10^j))/(1-x^10^(j+1)). (End)

Extensions

More terms from Emeric Deutsch, Feb 23 2005
Definition revised by N. J. A. Sloane, Mar 30 2018

A104355 Number of trailing zeros in decimal representation of A104350(n).

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 06 2005

Keywords

Crossrefs

Programs

  • Mathematica
    IntegerExponent[FoldList[Times, Array[FactorInteger[#][[-1, 1]] &, 100]], 10] (* Amiram Eldar, Apr 08 2024 *)
  • PARI
    gpf(n) = {my(p = factor(n)[, 1]); p[#p];}
    a(n) = valuation(prod(k = 2, n, gpf(k)), 10); \\ Amiram Eldar, Apr 08 2024
    
  • PARI
    \\ See link. David A. Corneth, Apr 08 2024

Formula

a(A104356(n)) = n and a(m) < n for m < A104356(n);
a(n) = A122840(A104350(n)). - Reinhard Zumkeller, Mar 10 2013

A246839 Number of trailing zeros in A002109(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 5, 5, 5, 5, 5, 15, 15, 15, 15, 15, 30, 30, 30, 30, 30, 50, 50, 50, 50, 50, 100, 100, 100, 100, 100, 130, 130, 130, 130, 130, 165, 165, 165, 165, 165, 205, 205, 205, 205, 205, 250, 250, 250, 250, 250, 350, 350, 350, 350, 350, 405, 405, 405, 405
Offset: 0

Views

Author

Chai Wah Wu, Sep 04 2014

Keywords

Crossrefs

Programs

  • Mathematica
    (n=#;k=0;While[Mod[n,10]==0,n=n/10;k++];k)&/@Hyperfactorial@Range[0,60] (* Giorgos Kalogeropoulos, Sep 14 2021 *)
  • PARI
    a(n) = sum(i=1, n, i*valuation(i, 5)); \\ Michel Marcus, Sep 14 2021
  • Python
    def a(n):
      s = 1
      for k in range(n+1):
        s *= k**k
      i = 1
      while not s % 10**i:
        i += 1
      return i-1
    n = 1
    while n < 100:
      print(a(n),end=', ')
      n += 1 # Derek Orr, Sep 04 2014
    
  • Python
    from sympy import multiplicity
    A246839, p5 = [0,0,0,0,0], 0
    for n in range(5,10**3,5):
        p5 += multiplicity(5,n)*n
        A246839.extend([p5]*5)
    # Chai Wah Wu, Sep 05 2014
    

Formula

From Michel Marcus, Sep 14 2021: (Start)
a(n) = A122840(A002109(n)), but also,
a(n) = A112765(A002109(n)), see explanation in A002109; so
a(n) = Sum_{i=1..n} i*v_5(i), where v_5(i) = A112765(i) is the exponent of the highest power of 5 dividing i. After a similar formula in A249152. (End)
a(n) = A246817(floor(n/5)+1). - Jason Bard, Sep 06 2025

A251984 Smallest number such that a carry occurs when adding it to n in decimal representation.

Original entry on oeis.org

9, 8, 7, 6, 5, 4, 3, 2, 1, 90, 9, 8, 7, 6, 5, 4, 3, 2, 1, 80, 9, 8, 7, 6, 5, 4, 3, 2, 1, 70, 9, 8, 7, 6, 5, 4, 3, 2, 1, 60, 9, 8, 7, 6, 5, 4, 3, 2, 1, 50, 9, 8, 7, 6, 5, 4, 3, 2, 1, 40, 9, 8, 7, 6, 5, 4, 3, 2, 1, 30, 9, 8, 7, 6, 5, 4, 3, 2, 1, 20, 9, 8, 7, 6
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 12 2014

Keywords

Crossrefs

Programs

  • Haskell
    a251984 n = if d > 0 then 10 - d else 10 * a251984 n'
                where (n',d) = divMod n 10
    
  • Python
    def a(n):
        s = str(n)
        t = s.strip('0')
        return (10 - int(t)%10) * 10**(len(s) - len(t))
    print([a(n) for n in range(1, 85)]) # Michael S. Branicky, Sep 08 2021

Formula

a(n) = (10 - A004151(n) mod 10) * 10^A122840(n).

A102670 Number of digits >= 2 in the decimal representations of all integers from 0 to n.

Original entry on oeis.org

0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 22, 24, 26, 28, 30, 32, 34, 35, 36, 38, 40, 42, 44, 46, 48, 50, 52, 53, 54, 56, 58, 60, 62, 64, 66, 68, 70, 71, 72, 74, 76, 78, 80, 82, 84, 86, 88, 89, 90, 92, 94, 96, 98, 100, 102, 104, 106, 107, 108
Offset: 0

Views

Author

N. J. A. Sloane, Feb 03 2005

Keywords

Comments

The total number of digits >= 2 occurring in all the numbers 0, 1, 2, ..., n (in decimal representation). - Hieronymus Fischer, Jun 10 2012

Crossrefs

Programs

  • Maple
    p:=proc(n) local b,ct,j: b:=convert(n,base,10): ct:=0: for j from 1 to nops(b) do if b[j]>=2 then ct:=ct+1 else ct:=ct fi od: ct: end: seq(add(p(i),i=0..n), n=0..77); # Emeric Deutsch, Feb 23 2005
  • Mathematica
    Accumulate[Table[Count[IntegerDigits[n],?(#>1&)],{n,0,80}]] (* _Harvey P. Dale, Apr 17 2014 *)

Formula

From Hieronymus Fischer, Jun 10 2012: (Start)
a(n) = (1/2)*Sum_{j=1..m+1} (floor(n/10^j + 0.8)*(2n + 2 + ((3/5) - floor(n/10^j + 4/5))*10^j) - floor(n/10^j)*(2n + 2 - (1 + floor(n/10^j)) * 10^j)), where m = floor(log_10(n)).
a(n) = (n+1)* A102669(n) + (1/2)*Sum_{j=1..m+1} (((3/5)*floor(n/10^j + 4/5) + floor(n/10^j))*10^j - (floor(n/10^j + 4/5)^2 - floor(n/10^j)^2)*10^j), where m = floor(log_10(n)).
a(10^m - 1) = 8*m*10^(m-1).
(This is the total number of digits >= 2 occurring in all the numbers with <= m places.)
G.f.: g(x) = (1/(1-x)^2)*Sum_{j>=0} (x^(2*10^j) - x^(10*10^j))/(1 - x^10^(j+1)).
General formulas for the total number of digits >= d in the decimal representations of all integers from 0 to n.
a(n) = (1/2)*Sum_{j=1..m+1} (floor(n/10^j + (10-d)/10) *(2n + 2 + ((5-d)/5 - floor(n/10^j + (10-d)/10))*10^j) - floor(n/10^j)*(2n + 2 - (1 + floor(n/10^j)) * 10^j)), where m = floor(log_10(n)).
a(n) = (n+1)*F(n,d) + (1/2)*Sum_{j=1..m+1} ((((5-d)/5)*floor(n/10^j + (10-d)/10) + floor(n/10^j))*10^j - (floor(n/10^j + (10-d)/10)^2 - floor(n/10^j)^2)*10^j), where m = floor(log_10(n)) and F(n,d) = number of digits >= d in the decimal representation of n.
a(10^m - 1) = (10-d)*m*10^(m-1).
(This is the total number of digits >= d occurring in all the numbers with <= m places.)
G.f.: g(x) = (1/(1-x)^2)*Sum_{j>=0} (x^(d*10^j) - x^(10*10^j))/(1 - x^10^(j+1)). (End)

Extensions

More terms from Emeric Deutsch, Feb 23 2005
Previous Showing 21-30 of 48 results. Next