cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A275997 Numbers k whose deficiency is 64: 2k - sigma(k) = 64.

Original entry on oeis.org

134, 284, 410, 632, 1292, 1628, 4064, 9752, 12224, 22712, 66992, 72944, 403988, 556544, 2161664, 2330528, 8517632, 13228352, 14563832, 15422912, 20732792, 89472632, 134733824, 150511232, 283551872, 537903104, 731670272, 915473696, 1846850576, 2149548032, 2159587616
Offset: 1

Views

Author

Timothy L. Tiffin, Aug 16 2016

Keywords

Comments

Any term x = a(m) in this sequence can be used with any term y in A275996 to satisfy the property (sigma(x)+sigma(y))/(x+y) = 2, which is a necessary (but not sufficient) condition for two numbers to be amicable.
The smallest amicable pair is (220, 284) = (A275996(2), a(2)) = (A063990(1), A063990(2)), where 284 - 220 = 64 is the abundance of 220 and the deficiency of 284.
The amicable pair (66928, 66992) = (A275996(7), a(11)) = (A063990(18), A063990(19)), where 66992 - 66928 = 64 is the deficiency of 66992 and the abundance of 66928.
Contains numbers 2^(k-1)*(2^k + 63) whenever 2^k + 63 is prime. - Max Alekseyev, Aug 27 2025

Examples

			a(1) = 134, since 2*134 - sigma(134) = 268 - 204 = 64.
		

Crossrefs

Deficiency k: A191363 (k=2), A125246 (k=4), A141548 (k=6), A125247 (k=8), A101223 (k=10), A141549 (k=12), A141550 (k=14), A125248 (k=16), A223608 (k=18), A223607 (k=20), A223606 (k=22), A385255(k=24), A275702 (k=26), A387352 (k=32).
Abundance k: A088831 (k=2), A088832 (k=4), A087167 (k=6), A088833 (k=8), A223609 (k=10), A141545 (k=12), A141546 (k=14), A141547 (k=16), A223610 (k=18), A223611 (k=20), A223612 (k=22), A223613 (k=24), A275701 (k=26), A175989 (k=32), A275996 (k=64), A292626 (k=128).

Programs

  • Mathematica
    Select[Range[10^7], 2 # - DivisorSigma[1, #] == 64 &] (* Michael De Vlieger, Jan 10 2017 *)
  • PARI
    isok(n) = 2*n - sigma(n) == 64; \\ Michel Marcus, Dec 30 2016

Extensions

a(23)-a(31) from Jinyuan Wang, Mar 02 2020

A292626 Numbers k whose abundance is 128: sigma(k) - 2*k = 128.

Original entry on oeis.org

860, 5336, 6536, 9656, 16256, 55796, 70864, 98048, 361556, 776096, 2227616, 4145216, 4498136, 4632896, 8124416, 13086016, 34869056, 38546576, 150094976, 172960856, 196066256, 962085536, 1080008576, 1733780336, 1844788112, 2143256576, 2531343872, 2986104064, 9677743616, 11276687456, 17104503968, 20680182272, 21568135616
Offset: 1

Views

Author

Fabian Schneider, Sep 20 2017

Keywords

Crossrefs

Subsequence of A259174.
Deficiency k: A191363 (k=2), A125246 (k=4), A141548 (k=6), A125247 (k=8), A101223 (k=10), A141549 (k=12), A141550 (k=14), A125248 (k=16), A223608 (k=18), A223607 (k=20), A223606 (k=22), A385255(k=24), A275702 (k=26), A387352 (k=32), A275997 (k=64).
Abundance k: A088831 (k=2), A088832 (k=4), A087167 (k=6), A088833 (k=8), A223609 (k=10), A141545 (k=12), A141546 (k=14), A141547 (k=16), A223610 (k=18), A223611 (k=20), A223612 (k=22), A223613 (k=24), A275701 (k=26), A175989 (k=32), A275996 (k=64).

Programs

  • Mathematica
    fQ[n_] := DivisorSigma[1, n] == 2 n + 128; Select[ Range@ 10^8, fQ] (* Robert G. Wilson v, Nov 19 2017 *)
  • PARI
    isok(n) = sigma(n) - 2*n == 128; \\ Michel Marcus, Sep 20 2017

Extensions

a(9)-a(18) from Michel Marcus, Sep 20 2017
a(19)-a(24), a(26), a(29)-a(30), a(33) from Robert G. Wilson v, Nov 20 2017
Missing terms a(25), a(27)-a(28), a(31)-a(32) inserted and terms a(34) onward added by Max Alekseyev, Aug 30 2025

A385255 Numbers m whose deficiency is 24: sigma(m) - 2*m = -24.

Original entry on oeis.org

124, 9664, 151115727458150838697984
Offset: 1

Views

Author

Max Alekseyev, Jul 29 2025

Keywords

Comments

Contains numbers 2^(k-1)*(2^k + 23) for k in A057203. First three terms have this form.

Crossrefs

Deficiency k: A191363 (k=2), A125246 (k=4), A141548 (k=6), A125247 (k=8), A101223 (k=10), A141549 (k=12), A141550 (k=14), A125248 (k=16), A223608 (k=18), A223607 (k=20), A223606 (k=22), A275702 (k=26).
Abundance k: A088831 (k=2), A088832 (k=4), A087167 (k=6), A088833 (k=8), A223609 (k=10), A141545 (k=12), A141546 (k=14), A141547 (k=16), A223610 (k=18), A223611 (k=20), A223612 (k=22), A223613 (k=24), A275701 (k=26).
Cf. A057203.

A387352 Numbers m with deficiency 32: sigma(m) - 2*m = -32.

Original entry on oeis.org

250, 376, 1276, 12616, 20536, 396916, 801376, 1297312, 8452096, 33721216, 40575616, 59376256, 89397016, 99523456, 101556016, 150441856, 173706136, 269096704, 283417216, 500101936, 1082640256, 1846506832, 15531546112, 34675557856, 136310177392, 136783784608
Offset: 1

Views

Author

Max Alekseyev, Aug 27 2025

Keywords

Comments

Contains numbers 2^(k-1)*(2^k + 31) for k in A247952.

Crossrefs

Deficiency k: A191363 (k=2), A125246 (k=4), A141548 (k=6), A125247 (k=8), A101223 (k=10), A141549 (k=12), A141550 (k=14), A125248 (k=16), A223608 (k=18), A223607 (k=20), A223606 (k=22), A385255(k=24), A275702 (k=26), A275997 (k=64).
Abundance k: A088831 (k=2), A088832 (k=4), A087167 (k=6), A088833 (k=8), A223609 (k=10), A141545 (k=12), A141546 (k=14), A141547 (k=16), A223610 (k=18), A223611 (k=20), A223612 (k=22), A223613 (k=24), A275701 (k=26), A175989 (k=32), A275996 (k=64), A292626 (k=128).
Cf. A247952.

A217769 Least number k > n such that sigma(k) = 2*(k-n), or 0 if no such k exists.

Original entry on oeis.org

6, 3, 5, 7, 22, 11, 13, 27, 17, 19, 46, 23, 124, 58, 29, 31, 250, 57, 37, 55, 41, 43, 94, 47, 1264, 106, 53, 87, 118, 59, 61, 85, 134, 67, 142, 71, 73, 712, 158, 79, 166, 83, 405, 115, 89, 141, 406, 119, 97, 202, 101, 103, 214, 107, 109, 145, 113, 177, 418, 143
Offset: 0

Views

Author

Jayanta Basu, Mar 28 2013

Keywords

Comments

a(0) = 6 corresponds to the smallest perfect number.
Is n = 144 the first number for which a(n) = 0? - T. D. Noe, Mar 28 2013
No, a(144) = 95501968. - Giovanni Resta, Mar 28 2013
We can instead compute k - sigma(k)/2 for increasing k, which is computationally much faster. In this case, we stop computing when all n have been found for a range of numbers. - T. D. Noe, Mar 28 2013
Also, the first number whose deficiency is 2n. This is the even bisection of A082730. Hence, the first number in the following sequences: A000396, A191363, A125246, A141548, A125247, A101223, A141549, A141550, A125248, A223608, A223607, A223606. - T. D. Noe, Mar 29 2013
10^12 < a(654) <= 618970019665683124609613824. - Donovan Johnson, Jan 04 2014

Examples

			a(4)=22, since 22 is the least number such that sigma(22)=36=2*(22-4).
		

Crossrefs

Cf. A087998 (negative n).

Programs

  • Mathematica
    Table[Min[Select[Range[2000], DivisorSigma[1, #] == 2*(# - i) &]], {i, 0, 60}]
    nn = 144; t = Table[0, {nn}]; k = 0; While[k++; Times @@ t == 0, s = (2*k - DivisorSigma[1, k])/2; If[s >= 0 && s < nn && IntegerQ[s] && t[[s + 1]] == 0, t[[s + 1]] = k]]; t (* T. D. Noe, Mar 28 2013 *)

A067680 Numbers k such that sigma(2k + 2) = 4k.

Original entry on oeis.org

6, 21, 54, 75, 441, 1071, 4191, 9315, 58311, 4197375, 7685151, 36997695, 268460031, 1073790975, 17180065791, 13517087570210304, 18014398710808575, 288230376957018111
Offset: 1

Views

Author

Benoit Cloitre, Feb 04 2002

Keywords

Comments

If k is a term, then 2*k + 2 is a term of A125246. - Jinyuan Wang, Apr 08 2020

Crossrefs

Programs

  • PARI
    isok(k) = sigma(2*k+2) == 4*k; \\ Michel Marcus, Apr 06 2020

Extensions

a(9) from Benoit Cloitre and Neven Juric (neven.juric(AT)apis-it.hr), May 21 2004
a(10)-a(15) from Donovan Johnson, Jan 31 2009
a(16)-a(18) from Jinyuan Wang, Apr 06 2020

A292557 a(n) is the smallest number k such that 2k - sigma(k) = 2^n.

Original entry on oeis.org

3, 5, 22, 17, 250, 134, 262, 257, 6556, 4124, 10330, 8198, 91036, 19649, 65542, 65537, 1442716, 524294, 1363258, 4194332, 4411642, 16442342, 16866106, 22075325, 156791188, 536871032, 2160104368, 536870918, 1074187546, 2147483654, 4295862586, 19492545788
Offset: 1

Views

Author

XU Pingya, Sep 19 2017

Keywords

Comments

Primes of the form 2^n+1, i.e., Fermat primes (A019434) are terms of this sequence.
For n > 32, a(n) > 2 * 10^10.

Examples

			sigma(20) - 2*20 = 2^1, a(1) = 20.
sigma(108) - 2*108 = 64 = 2^6, a(6) = 108.
		

Crossrefs

Programs

  • Mathematica
    Table[k = 1; While[Log[2, 2k - DivisorSigma[1, k]] != n, k++]; k, {n, 31}]
  • PARI
    a(n) = my(k=1); while(2*k - sigma(k) != 2^n, k++); k; \\ Michel Marcus, Sep 19 2017

A162302 Numbers n such that (A000203(n)+28)/n is an integer.

Original entry on oeis.org

1, 28, 29, 62, 84, 182, 230, 252, 344, 756, 944, 2268, 6710, 6804, 20264, 20412, 36224, 61236, 183708, 538112, 551124, 1653372, 2085710, 4960116, 14503550, 14880348, 33665024, 44641044, 55328384, 133923132, 134438912, 401769396, 615206030, 1082574464
Offset: 1

Views

Author

Ctibor O. Zizka, Jun 30 2009

Keywords

Comments

Contains the subset of all n of the form 28*3^k.
Generalized sequences are defined by A*A000203(n)+ B = C*n with A,B,C integers.
Then we get for different settings of A, B, C hyperperfect numbers:
A=1, C=2, B=0 gives A000396. A=1, C=2, B=1 gives A000079.
A=1, C=2, B=2 gives A056006. A=1, C=2, B=4 gives A125246. A=1, C=2, B=6 gives A141548.
A=1, C=2, B=8 gives A125247. A=1, C=2, B=10 gives A101223. A=1, C=2, B=12 gives A141549.
A=1, C=2, B=14 gives A141550. A=1, C=2, B=16 gives A125248. A=1, C=2, B=0 gives A000396.
A=1, C=2, B=0 gives A000396. A=1, C=3, B=0 gives A005820.
Not in the OEIS: A=1, C=3, B=12,18,28,... A=2, C=3, B=21,27,33,45,... A=3, C=4, B=20,...
Terms not of the form 28*3^n: 1, 29, 62, 182, 230, 344, 944, 6710, 20264, 36224, 538112, 2085710, 14503550, 33665024, 55328384, ..., . [Robert G. Wilson v, Sep 05 2010]

Crossrefs

Programs

  • Maple
    A000203 := proc(n) numtheory[sigma](n) ; end proc:
    isA152302 := proc(n) (A000203(n)+28) mod n = 0 ; end proc:
    for n from 1 to 1000000 do if isA152302(n) then printf("%d,",n) ; end if ; end do: # R. J. Mathar, Aug 25 2010
  • Mathematica
    fQ[n_] := Divisible[ DivisorSigma[1, n] + 28, n]; lst = {}; k = 1; While[k < 10^9/4, If[ fQ@k, AppendTo[lst, k]; Print@k]; k++ ]; lst (* Robert G. Wilson v, Sep 05 2010 *)

Extensions

Missing terms (1, 29, 182,..) inserted, 7 terms added, comment corrected - R. J. Mathar, Aug 25 2010
a(22)-a(30) from Robert G. Wilson v, Sep 05 2010
a(31)-a(34) from Donovan Johnson, Nov 03 2011

A225774 Primes p such that sigma(sigma(p)) = 2*phi(p); sigma(n) = A000203(n); phi(n) = A000010(n).

Original entry on oeis.org

13, 43, 109, 151, 883, 2143, 34360131583
Offset: 1

Views

Author

Jaroslav Krizek, Jul 26 2013

Keywords

Comments

There are no other terms <= 2*10^8.
Also primes p such that sigma(p + 1) = 2*phi(p) = 2p - 2.
Also primes p such that sigma(sigma(p)) - sigma(p) - p = -3. The only composite number <= 2*10^8 with this property is the number 4.
Subsequence of primes in A135241 (numbers k such that sigma(sigma(k)) = 2*phi(k)).
Primes p such that sigma(p+1)-2*(p+1) = -4. - Donovan Johnson, Aug 01 2013

Examples

			sigma(sigma(13)) = 2*phi(13) = 24.
		

Crossrefs

Extensions

a(7) from Donovan Johnson, Aug 01 2013

A248816 Numbers that are equal to the arithmetic derivative of the sum of their aliquot parts.

Original entry on oeis.org

152, 284, 4316, 18632, 25484, 2657259, 8394752, 12186976, 17702756, 1172473731, 2147581952, 13716855652, 63831498112
Offset: 1

Views

Author

Paolo P. Lava, Oct 15 2014

Keywords

Comments

Solutions of the equations n = (sigma(n)-n)'.
a(12) > 5*10^9. - Michel Marcus, Nov 01 2014
There could be a relation with terms in A125246 and A228450, since some terms of these sequences are here also. - Michel Marcus, Oct 30 2014
a(14) > 10^11. - Giovanni Resta, May 29 2016

Examples

			Sum of the aliquot parts of 284 is sigma(284) - 284 = 220 and the arithmetic derivative of 220 is 284.~
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:= proc(q) local a,n,p; for n from 1 to q do
    a:=(sigma(n)-n)*add(op(2,p)/op(1,p),p=ifactors(sigma(n)-n)[2]);
    if n=a then print(n); fi; od; end: P(10^9);
  • PARI
    ad(n) = sum(i=1, #f=factor(n)~, n/f[1, i]*f[2, i]);
    isok(n) = ad(sigma(n) - n) == n; \\ Michel Marcus, Oct 28 2014

Extensions

a(6)-a(11) from Michel Marcus, Oct 28 2014
a(12)-a(13) from Giovanni Resta, May 29 2016
Previous Showing 11-20 of 21 results. Next