cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A128395 Numbers k such that k^2 divides 15^k-1.

Original entry on oeis.org

1, 2, 4, 7, 8, 14, 16, 28, 56, 112, 136, 272, 452, 812, 904, 952, 1624, 1808, 1904, 3164, 3248, 6328, 11912, 12656, 15368, 18632, 23824, 27608, 30736, 37264, 47908, 55216, 60248, 83384, 91756, 95816, 102604, 107576, 113936, 120496, 130424, 166768
Offset: 1

Views

Author

Alexander Adamchuk, Mar 01 2007

Keywords

Crossrefs

Programs

  • Mathematica
    a={1};For[n=1,n<200000,n++,If[PowerMod[15,n,n^2]==1, AppendTo[a, n]]]; a (* Stefan Steinerberger, Jun 10 2007 *)
    Join[{1},Select[Range[167000],PowerMod[15,#,#^2]==1&]] (* Harvey P. Dale, Sep 14 2020 *)
  • PARI
    is(k) = Mod(15, k^2)^k == 1; \\ Amiram Eldar, May 21 2024

Extensions

More terms from Stefan Steinerberger, Jun 10 2007

A128402 Numbers k such that k^2 divides 22^k-1.

Original entry on oeis.org

1, 3, 7, 21, 39, 273, 507, 3081, 3549, 21567, 40053, 78117, 280371, 343239, 546819, 1015521, 2056899, 2402673, 5998317, 6171243, 7108647, 8740173, 12338859, 14398293, 18988203, 27115881, 41988219, 43198701, 47727771, 55431363
Offset: 1

Views

Author

Alexander Adamchuk, Mar 01 2007

Keywords

Crossrefs

Programs

  • Maple
    select(t -> 22 &^ t - 1 mod t^2 = 0, [seq(2*k+1,k=0..10^6)]); # Robert Israel, Jan 23 2015
  • Mathematica
    a={}; Do[r=(22^n-1)/n^2; If[r==IntegerPart[r], AppendTo[a, n]], {n, 1, 10^3}]; a (* Vladimir Joseph Stephan Orlovsky, Aug 07 2008 *)
  • PARI
    { forstep(m=11,10^8,2, if( Mod(22,m^2)^m==1, print(m) ) ) } \\ Max Alekseyev, Oct 18 2008

Extensions

a(14)-a(30) from Max Alekseyev, Oct 18 2008

A128404 Numbers k such that k^2 divides 24^k-1.

Original entry on oeis.org

1, 23, 1081, 2870377, 7009273, 15954479, 134907719, 329435831, 537539141, 15001987199, 874750261127, 1991103024721, 4272172921319, 4862143429729, 7933540182019, 12816504745411, 41113262272969, 67084347257659
Offset: 1

Views

Author

Alexander Adamchuk, Mar 01 2007

Keywords

Comments

23 divides all terms except the first.

Crossrefs

Programs

Extensions

a(5)-a(6) from Farideh Firoozbakht, Mar 05 2007
a(7)-a(10) from Ryan Propper, Feb 23 2008
Terms a(11) onward from Max Alekseyev, May 06 2010

A128456 Quotients A128452(p+1)/p for prime p = A000040(n).

Original entry on oeis.org

2, 7, 311, 127, 23, 157, 7563707819165039903, 75368484119, 47, 9629, 311, 25679, 821, 758771382833029, 12409, 71233, 18438666190697, 2443783, 2939291, 71711, 352883, 181113265579, 167, 105199, 3881, 1314520253, 619, 20759, 117503, 1162660843
Offset: 1

Views

Author

Alexander Adamchuk, Mar 05 2007, Mar 09 2007

Keywords

Comments

a(n) coincides with A128357(n) from n = 2 up to n = 6.

Crossrefs

Formula

a(n) = A128452(A000040(n)+1)/A000040(n).
a(n) = A020639(((p+1)^p - 1)/p^2), i.e., the smallest prime factor of ((p+1)^p - 1)/p^2, where p = A000040(n).

Extensions

Terms a(14) onward from Max Alekseyev, May 05 2010

A128452 Least number k > n such that k^2 divides n^k - 1.

Original entry on oeis.org

4, 21, 6, 1555, 8, 889, 10, 111, 12, 253, 14, 2041, 16, 21, 18, 128583032925805678351, 20, 1432001198261, 22, 39, 24, 1081, 26, 55, 28, 171, 30, 279241, 32, 9641, 34, 1191, 36, 55, 38, 950123, 40, 1641, 42, 33661, 44, 32627169461820247, 46, 63, 48, 583223, 50
Offset: 3

Views

Author

Alexander Adamchuk, Mar 05 2007, Mar 09 2007

Keywords

Comments

For prime p, p divides a(p+1). Quotients a(p+1)/p for prime p = A000040(n) are listed in A128456(n) which coincides with A128357(n) for n from 2 to 6.
a(n) divides n^(n-1) - 1.

Crossrefs

Formula

a(2n-1) = 2n.

Extensions

More terms from Alexander Adamchuk, Mar 09 2007
Terms a(22) onward from Max Alekseyev, May 05 2010

A333500 A(n,k) is the n-th number m such that m^2 divides k^m - 1 (or 0 if m does not exist); square array A(n,k), n>=1, k>=1, read by antidiagonals.

Original entry on oeis.org

1, 1, 2, 1, 0, 3, 1, 2, 0, 4, 1, 3, 4, 0, 5, 1, 2, 21, 20, 0, 6, 1, 5, 4, 903, 220, 0, 7, 1, 2, 1555, 6, 2667, 1220, 0, 8, 1, 7, 3, 9673655, 12, 7077, 2420, 0, 9, 1, 2, 889, 4, 187159211791705, 42, 113799, 5060, 0, 10, 1, 3, 4, 2359, 6, 776119592182705, 52, 114681, 13420, 0, 11
Offset: 1

Views

Author

Seiichi Manyama, Mar 24 2020

Keywords

Examples

			Square array A(n,k) begins:
  1, 1,    1,    1,  1,               1, ...
  2, 0,    2,    3,  2,               5, ...
  3, 0,    4,   21,  4,            1555, ...
  4, 0,   20,  903,  6,         9673655, ...
  5, 0,  220, 2667, 12, 187159211791705, ...
  6, 0, 1220, 7077, 42, 776119592182705, ...
		

Crossrefs

A218087 Numbers that are divisible by the sum of their digits in every base from 2 through to 16.

Original entry on oeis.org

1, 2, 4, 6, 720, 780, 840, 1008, 1092, 1584, 2016, 2520, 2880, 3168, 3360, 3600, 4368, 5640, 6048, 6720, 7560, 8640, 8820, 9520, 10080, 11088, 12240, 13104, 13440, 13860, 14040, 15840, 17160, 18480, 18720, 19320, 19656, 20736, 21840, 22176, 22680, 23040
Offset: 1

Views

Author

Arkadiusz Wesolowski, Oct 20 2012

Keywords

Comments

Many terms, including the first nine, are in A128397; it seems that the same (and no others(?)) are in A177917. - M. F. Hasler, Oct 21 2012

Examples

			In base 10 the number 322 is divisible by the sum of its digits, it is a Harshad number. It also has this property in octal (322 = 502(8), 5 + 0 + 2 = 7) and hexadecimal (322 = 142(16), 1 + 4 + 2 = 7), but not in binary. Therefore 322 is not a term.
		

Crossrefs

See A005349 for numbers that are Harshad in base 10.

Programs

  • Mathematica
    lst = {}; Do[b = 2; While[b < 17, If[! Mod[n, Total@IntegerDigits[n, b]] == 0, Break[]]; b++]; If[b == 17, AppendTo[lst, n]], {n, 2, 23040, 2}]; Prepend[lst, 1]
    Select[Range[25000],Union[Divisible[#,Table[Total[IntegerDigits[#,b]],{b,2,16}]]]=={True}&] (* Harvey P. Dale, Jan 03 2024 *)
Previous Showing 11-17 of 17 results.