A318570
Expansion of Product_{k>=1} ((1 - x)^k + x^k)/((1 - x)^k - x^k).
Original entry on oeis.org
1, 2, 6, 18, 52, 146, 402, 1090, 2916, 7708, 20160, 52236, 134222, 342304, 867024, 2182384, 5461696, 13595918, 33677550, 83036878, 203859820, 498470998, 1214230586, 2947204870, 7129403128, 17191258642, 41328057106, 99067295658, 236822823336, 564650823162, 1342921372126
Offset: 0
-
a:=series(mul(((1-x)^k+x^k)/((1-x)^k-x^k),k=1..100),x=0,31): seq(coeff(a,x,n),n=0..30); # Paolo P. Lava, Apr 02 2019
-
nmax = 30; CoefficientList[Series[Product[((1 - x)^k + x^k)/((1 - x)^k - x^k), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 30; CoefficientList[Series[1/EllipticTheta[4, 0, x/(1 - x)], {x, 0, nmax}], x]
nmax = 30; CoefficientList[Series[Exp[Sum[(DivisorSigma[1, 2 k] - DivisorSigma[1, k]) x^k/(k (1 - x)^k), {k, 1, nmax}]], {x, 0, nmax}], x]
A380412
First term of the n-th differences of the strict partition numbers. Inverse zero-based binomial transform of A000009.
Original entry on oeis.org
1, 0, 0, 1, -3, 7, -14, 25, -41, 64, -100, 165, -294, 550, -1023, 1795, -2823, 3658, -2882, -2873, 20435, -62185, 148863, -314008, 613957, -1155794, 2175823, -4244026, 8753538, -19006490, 42471787, -95234575, 210395407, -453413866, 949508390, -1931939460
Offset: 0
-
nn=10;Table[First[Differences[PartitionsQ/@Range[0,nn],n]],{n,0,nn}]
A307311
Expansion of Product_{k>=1} 1/(1 + x^k/(1 - x)^k).
Original entry on oeis.org
1, -1, -1, -2, -3, -4, -5, -6, -6, -1, 19, 74, 200, 461, 977, 1987, 3976, 7902, 15559, 30105, 56778, 103833, 183765, 314882, 523007, 841752, 1305431, 1916607, 2540433, 2609983, 381628, -8814988, -36463325, -109113400, -285322360, -689608522, -1579574566, -3477967848
Offset: 0
-
m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( 1/(&*[(1+x^k/(1-x)^k): k in [1..m+2]]) )); // G. C. Greubel, Apr 03 2019
-
a:=series(mul(1/(1+x^k/(1-x)^k),k=1..100), x=0,38): seq(coeff(a, x, n), n=0..37); # Paolo P. Lava, Apr 02 2019
-
nmax = 40; CoefficientList[Series[Product[1/(1 + x^k/(1 - x)^k), {k, 1, nmax}], {x, 0, nmax}], x]
-
m=40; my(x='x+O('x^m)); Vec( 1/prod(k=1,m+2, (1+x^k/(1-x)^k)) ) \\ G. C. Greubel, Apr 03 2019
-
m=40; (1/product(1+x^k/(1-x)^k for k in (1..m+2))).series(x, m).coefficients(x, sparse=False) # G. C. Greubel, Apr 03 2019
A307548
Expansion of Product_{k>=1} (1 - (x/(1+x))^k).
Original entry on oeis.org
1, -1, 0, 1, -2, 4, -9, 21, -48, 105, -218, 429, -803, 1442, -2521, 4380, -7734, 14091, -26468, 50405, -94980, 172824, -296704, 467589, -644459, 678109, -177123, -1752141, 7003180, -19432494, 46778567, -104623822, 224830880, -473859273, 992825436, -2084921584
Offset: 0
-
m = 35; CoefficientList[Series[Product[1 - (x/(1+x))^k, {k, 1, m}], {x, 0, m}], x] (* Amiram Eldar, May 14 2021 *)
-
N=66; x='x+O('x^N); Vec(prod(k=1, N, 1-(x/(1+x))^k))
A320586
Expansion of (1/(1 - x)) * Sum_{k>=1} k*x^k/(x^k + (1 - x)^k).
Original entry on oeis.org
1, 3, 10, 27, 66, 156, 365, 843, 1909, 4238, 9274, 20136, 43564, 94013, 202155, 432475, 919820, 1945767, 4098852, 8610922, 18061277, 37844128, 79212323, 165565920, 345412341, 719047566, 1493488927, 3095654281, 6405734456, 13238611241, 27336762272, 56416256443, 116376652600
Offset: 1
-
m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (1/(1 +-x))*(&+[k*x^k/(x^k + (1 - x)^k): k in [1..(m+2)]]) )); // G. C. Greubel, Oct 30 2018
-
seq(coeff(series((1/(1-x))*add(k*x^k/(x^k+(1-x)^k),k=1..n),x,n+1), x, n), n = 1 .. 35); # Muniru A Asiru, Oct 16 2018
-
nmax = 33; Rest[CoefficientList[Series[1/(1 - x) Sum[k x^k/(x^k + (1 - x)^k), {k, 1, nmax}], {x, 0, nmax}], x]]
nmax = 33; Rest[CoefficientList[Series[(EllipticTheta[3, 0, x/(1 - x)]^4 + EllipticTheta[2, 0, x/(1 - x)]^4 - 1)/(24 (1 - x)), {x, 0, nmax}], x]]
Table[Sum[Binomial[n, k] Sum[(-1)^(k/d + 1) d, {d, Divisors[k]}], {k, n}], {n, 33}]
-
m=50; x='x+O('x^m); Vec((1/(1 - x))*sum(k=1, m+2, k*x^k/(x^k + (1 - x)^k))) \\ G. C. Greubel, Oct 30 2018
A307262
Expansion of Product_{k>=1} (1 + k*x^k/(1 - x)^k).
Original entry on oeis.org
1, 1, 3, 10, 29, 82, 231, 646, 1780, 4835, 13009, 34794, 92600, 245119, 644983, 1686869, 4387030, 11353686, 29261059, 75134965, 192261744, 490305251, 1246128051, 3156425284, 7969135647, 20057905672, 50339682075, 126002008265, 314604617989, 783668652379, 1947689149020
Offset: 0
-
a:=series(mul(1+k*x^k/(1-x)^k,k=1..100),x=0,31): seq(coeff(a,x,n),n=0..30); # Paolo P. Lava, Apr 03 2019
-
nmax = 30; CoefficientList[Series[Product[(1 + k x^k/(1 - x)^k), {k, 1, nmax}], {x, 0, nmax}], x]
A307680
Expansion of e.g.f. Product_{k>=1} (1 + x^k/(1 - x)^k)^(1/k).
Original entry on oeis.org
1, 1, 3, 17, 131, 1239, 14029, 187627, 2906553, 50982929, 993806531, 21270277401, 496425262123, 12577053063847, 344382608381421, 10139294386051139, 319175215666010609, 10684742192933940897, 378662321114852778883, 14158327369578651838369, 557151639159864934384851
Offset: 0
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 17*x^3/3! + 131*x^4/4! + 1239*x^5/5! + 14029*x^6/6! + 187627*x^7/7! + 2906553*x^8/8! + ...
-
nmax = 20; CoefficientList[Series[Product[(1 + x^k/(1 - x)^k)^(1/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 20; CoefficientList[Series[Exp[Sum[Sum[(-1)^(d + 1), {d, Divisors[k]}] x^k/(k (1 - x)^k), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
A332024
E.g.f.: Product_{k>=1} (1 + x^k/(k!*(1 - x)^k)).
Original entry on oeis.org
1, 1, 3, 16, 113, 956, 9382, 105253, 1334517, 18904936, 295787126, 5056826039, 93594929738, 1861321879535, 39536014577711, 892763601542509, 21352130132268541, 539243894127067888, 14342761454293102006, 400830115867761118963, 11743833994363640228070
Offset: 0
-
nmax = 20; CoefficientList[Series[Product[(1 + x^k/(k! (1 - x)^k)), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
-
seq(n)={Vec(serlaplace(prod(k=1, n, (1 + x^k/(k!*(1 - x)^k)) + O(x*x^n))))} \\ Andrew Howroyd, Feb 13 2020
A352120
G.f. A(x) satisfies: Product_{n>=1} (1 + x^n*A(x)) = Product_{n>=1} (1 + x^n/(1-x)^n).
Original entry on oeis.org
1, 1, 2, 5, 10, 20, 43, 93, 194, 403, 842, 1755, 3656, 7643, 15976, 33281, 69164, 143558, 297619, 616625, 1277729, 2647861, 5485300, 11356731, 23495794, 48567063, 100301668, 206994479, 426941231, 880227976, 1814221503, 3738368348, 7701376466
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 10*x^4 + 20*x^5 + 43*x^6 + 93*x^7 + 194*x^8 + 403*x^9 + 842*x^10 + 1755*x^11 + 3656*x^12 + ...
such that the following products are equal:
P(x) = (1 + x*A(x)) * (1 + x^2*A(x)) * (1 + x^3*A(x)) * (1 + x^4*A(x)) * (1 + x^5*A(x)) * (1 + x^6*A(x)) * ...
P(x) = (1 + x/(1-x)) * (1 + x^2/(1-x)^2) * (1 + x^3/(1-x)^3) * (1 + x^4/(1-x)^4) * (1 + x^5/(1-x)^5) * ...
also, we have the sums
P(x) = 1 + x*A(x)/(1-x) + x^3*A(x)^2/((1-x)*(1-x^2)) + x^6*A(x)^3/((1-x)*(1-x^2)*(1-x^3)) + x^10*A(x)^4/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) + ...
1/P(x) = 1 - x*A(x)/(1-x) + x^2*A(x)^2/((1-x)*(1-x^2)) - x^3*A(x)^3/((1-x)*(1-x^2)*(1-x^3)) + x^4*A(x)^4/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) -+ ...
where
P(x) = 1 + x + 2*x^2 + 5*x^3 + 12*x^4 + 28*x^5 + 65*x^6 + 151*x^7 + 350*x^8 + 807*x^9 + 1850*x^10 + ... + A129519(n)*x^n + ...
-
{a(n) = my(A=[1]); for(i=1,n, A=concat(A,0);
A[#A] = polcoeff( prod(n=1,#A, (1 + x^n/(1-x +x*O(x^#A))^n)/(1 + x^n*Ser(A)) ),#A) );A[n+1]}
for(n=0,30, print1(a(n),", "))
A307265
Expansion of Product_{k>=1} 1/(1 + (-x)^k/(1 - x)^k).
Original entry on oeis.org
1, 1, 1, 2, 5, 12, 27, 58, 122, 257, 549, 1190, 2600, 5683, 12367, 26749, 57530, 123202, 263115, 561131, 1196248, 2550975, 5443115, 11620526, 24814735, 52979512, 113038103, 240936717, 512916683, 1090501249, 2315608462, 4911611864, 10408318627, 22040127864
Offset: 0
-
a:=series(mul(1/(1+(-x)^k/(1-x)^k),k=1..50),x=0,34): seq(coeff(a,x,n),n=0..33); # Paolo P. Lava, Apr 02 2019
-
nmax = 33; CoefficientList[Series[Product[1/(1 + (-x)^k/(1 - x)^k), {k, 1, nmax}], {x, 0, nmax}], x]
Comments