cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 30 results. Next

A385139 The sum of divisors d of n such that n/d has exponents in its prime factorization that are all powers of 2 (A138302).

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 14, 13, 18, 12, 28, 14, 24, 24, 29, 18, 39, 20, 42, 32, 36, 24, 56, 31, 42, 39, 56, 30, 72, 32, 58, 48, 54, 48, 91, 38, 60, 56, 84, 42, 96, 44, 84, 78, 72, 48, 116, 57, 93, 72, 98, 54, 117, 72, 112, 80, 90, 60, 168, 62, 96, 104, 116, 84, 144
Offset: 1

Views

Author

Amiram Eldar, Jun 19 2025

Keywords

Crossrefs

The sum of divisors d of n such that n/d is: A001615 (squarefree), A002131 (odd), A069208 (powerful), A076752 (square), A129527 (power of 2), A254981 (cubefree), A244963 (nonsquarefree), A327626 (cube), A385134 (biquadratefree), A385135 (exponentially odd), A385136 (cubefull), A385137 (3-smooth), A385138 (5-rough), this sequence (exponentially 2^n).

Programs

  • Mathematica
    f[p_, e_] := p^e + Sum[p^(e - 2^k), {k, 0, Floor[Log2[e]]}]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i, 1]^f[i, 2] + sum(k = 0, logint(f[i, 2], 2), f[i, 1]^(f[i, 2]-2^k)));}

Formula

Multiplicative with a(p^e) = p^e + Sum_{k=0..floor(log_2(e))} p^(e-2^k).
a(n) <= A000203(n), with equality if and only if n is cubefree (A004709).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} (1 + (1-1/p)*(Sum_{k>=1} (Sum_{j=0..floor(log_2(k))} 1/p^(k+2^j)))) = 1.62194750148969761827... .

A328407 G.f. A(x) satisfies: A(x) = A(x^2) + x * (1 + x) / (1 - x)^3.

Original entry on oeis.org

1, 5, 9, 21, 25, 45, 49, 85, 81, 125, 121, 189, 169, 245, 225, 341, 289, 405, 361, 525, 441, 605, 529, 765, 625, 845, 729, 1029, 841, 1125, 961, 1365, 1089, 1445, 1225, 1701, 1369, 1805, 1521, 2125, 1681, 2205, 1849, 2541, 2025, 2645, 2209, 3069, 2401, 3125, 2601, 3549, 2809, 3645, 3025
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 14 2019

Keywords

Crossrefs

Programs

  • Magma
    [n eq 1 select 1 else IsOdd(n) select n^2 else Self(n div 2)+n^2 :n in [1..55]]; // Marius A. Burtea, Oct 15 2019
  • Mathematica
    nmax = 55; CoefficientList[Series[Sum[x^(2^k) (1 + x^(2^k))/(1 - x^(2^k))^3, {k, 0, Floor[Log[2, nmax]] + 1}], {x, 0, nmax}], x] // Rest
    a[n_] := If[EvenQ[n], a[n/2] + n^2, n^2]; Table[a[n], {n, 1, 55}]
    Table[DivisorSum[n, Boole[IntegerQ[Log[2, n/#]]] #^2 &], {n, 1, 55}]
    f[p_, e_] := If[p == 2, (4^(e + 1) - 1)/3, p^(2*e)]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 25 2020 *)

Formula

G.f.: Sum_{k>=0} x^(2^k) * (1 + x^(2^k)) / (1 - x^(2^k))^3.
G.f.: (1/3) * Sum_{k>=1} J_2(2*k) * x^k / (1 - x^k), where J_2() is the Jordan function (A007434).
Dirichlet g.f.: zeta(s-2) / (1 - 2^(-s)).
a(2*n) = a(n) + 4*n^2, a(2*n+1) = (2*n + 1)^2.
a(n) = Sum_{d|n} A209229(n/d) * d^2.
Product_{n>=1} (1 + x^n)^a(n) = g.f. for A023871.
Sum_{k=1..n} a(k) ~ 8*n^3/21. - Vaclav Kotesovec, Oct 15 2019
Multiplicative with a(2^e) = (4^(e+1)-1)/3, and a(p^e) = p^(2*e) for an odd prime p. - Amiram Eldar, Oct 25 2020

A373188 Expansion of Sum_{k>=0} x^(4^k) / (1 - x^(4^k))^2.

Original entry on oeis.org

1, 2, 3, 5, 5, 6, 7, 10, 9, 10, 11, 15, 13, 14, 15, 21, 17, 18, 19, 25, 21, 22, 23, 30, 25, 26, 27, 35, 29, 30, 31, 42, 33, 34, 35, 45, 37, 38, 39, 50, 41, 42, 43, 55, 45, 46, 47, 63, 49, 50, 51, 65, 53, 54, 55, 70, 57, 58, 59, 75, 61, 62, 63, 85, 65, 66, 67, 85, 69, 70, 71, 90, 73, 74, 75, 95, 77, 78, 79, 105, 81, 82, 83, 105, 85, 86
Offset: 1

Views

Author

Seiichi Manyama, May 27 2024

Keywords

Crossrefs

Formula

G.f. A(x) satisfies A(x) = x/(1 - x)^2 + A(x^4).
a(4*n+1) = 4*n+1, a(4*n+2) = 4*n+2, a(4*n+3) = 4*n+3 and a(4*n+4) = 4*n+4 + a(n+1) for n >= 0.

A331739 a(n) is n minus its largest odd divisor.

Original entry on oeis.org

0, 1, 0, 3, 0, 3, 0, 7, 0, 5, 0, 9, 0, 7, 0, 15, 0, 9, 0, 15, 0, 11, 0, 21, 0, 13, 0, 21, 0, 15, 0, 31, 0, 17, 0, 27, 0, 19, 0, 35, 0, 21, 0, 33, 0, 23, 0, 45, 0, 25, 0, 39, 0, 27, 0, 49, 0, 29, 0, 45, 0, 31, 0, 63, 0, 33, 0, 51, 0, 35, 0, 63, 0, 37, 0, 57, 0, 39, 0, 75, 0, 41, 0, 63, 0, 43, 0, 77, 0, 45, 0, 69, 0, 47
Offset: 1

Views

Author

Antti Karttunen, Feb 02 2020

Keywords

Crossrefs

Cf. A129527 (even bisection).

Programs

Formula

a(n) = n - A000265(n).
Sum_{k=1..n} a(k) ~ n^2/6. - Amiram Eldar, Sep 13 2024

A123390 Triangle read by rows: n-th row starts with n and continues with half the previous value as long as that is even.

Original entry on oeis.org

1, 2, 1, 3, 4, 2, 1, 5, 6, 3, 7, 8, 4, 2, 1, 9, 10, 5, 11, 12, 6, 3, 13, 14, 7, 15, 16, 8, 4, 2, 1, 17, 18, 9, 19, 20, 10, 5, 21, 22, 11, 23, 24, 12, 6, 3, 25, 26, 13, 27, 28, 14, 7, 29, 30, 15, 31, 32, 16, 8, 4, 2, 1, 33, 34, 17, 35, 36, 18, 9, 37, 38, 19, 39, 40, 20, 10, 5, 41, 42, 21
Offset: 1

Views

Author

Keywords

Comments

A fractal sequence, generated by the rule a(n) is a new maximum when a(n-1) is odd and a repetition of an earlier value when a(n-1) is even.
From Flávio V. Fernandes, Mar 13 2025: (Start)
a(n) is given by A003602(n) at A001511(n) diagram
1 . 2 . 3 . 4 . 5 . 6 . 7 . 8 . 9
. 1 . . . 2 . . . 3 . . . 4 . . .
. . . 1 . . . . . . . 2 . . . . .
. . . . . . . 1 . . . . . . . . .
. . . . . . . . . . . . . . . 1 .
read by backwards 2^n, which is given by A118319(n) at A001511(n) diagram
1 . 2 . 4 . 5 . 8 . 9 .11 .12 .16
. 3 . . . 6 . . .10 . . .13 . . .
. . . 7 . . . . . . .14 . . . . .
. . . . . . .15 . . . . . . . . .
. . . . . . . . . . . . . . .31 . - see formula. (End)

Examples

			Triangle starts
  1;
  2, 1;
  3;
  4, 2, 1;
  5;
  6, 3;
  7;
  8, 4, 2, 1;
  9;
  10, 5;
  11;
  12, 6, 3;
  13;
		

Crossrefs

Row lengths are A001511.
Row sums give A129527.
Cf. A120385.

Programs

  • Maple
    T:= proc(n) local m,l; m:=n; l:= m;
          while irem(m, 2, 'm')=0 do l:=l,m od: l
        end:
    seq(T(n), n=1..40);  # Alois P. Heinz, Oct 09 2015
  • Mathematica
    Flatten[Function[n, NestWhile[Append[#, Last[#]/2] &, {n}, EvenQ[Last[#]] &]][#] & /@ Range[20]] (* Birkas Gyorgy, Apr 13 2011 *)

Formula

a(1) = 1, for n > 1, if a(n-1) is even, a(n) = a(n-1)/2, otherwise a(n) = (max_{k
Ordinal transform of A082850.
a(n) = A003602(A108918(n)). - Flávio V. Fernandes, Mar 13 2025

A129265 Triangle read by rows: T(n,k) is the number of power of two divisors of n that are less than or equal to n/k.

Original entry on oeis.org

1, 2, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Author

Gary W. Adamson, Apr 06 2007

Keywords

Comments

Equals A115361 * A000012 as infinite lower triangular matrices (cf. A129264).

Examples

			First few rows of the triangle are:
  1;
  2, 1;
  1, 1, 1;
  3, 2, 1, 1;
  1, 1, 1, 1, 1;
  2, 2, 2, 1, 1, 1;
  1, 1, 1, 1, 1, 1, 1;
  ...
		

Crossrefs

Row sums are A129527.
Column 1 is A001511.

Programs

  • PARI
    T(n, k)={sumdiv(n, d, d <= n/k && d==1<Andrew Howroyd, Aug 07 2018

Formula

T(n,k) = 1 for n odd.

Extensions

Name changed and terms a(56) and beyond from Andrew Howroyd, Aug 07 2018

A129559 A054523 * A115361.

Original entry on oeis.org

1, 2, 1, 2, 0, 1, 4, 2, 0, 1, 4, 0, 0, 0, 1, 4, 2, 2, 0, 0, 1, 6, 0, 0, 0, 0, 0, 1, 8, 4, 0, 2, 0, 0, 0, 1, 6, 0, 2, 0, 0, 0, 0, 0, 1, 8, 4, 0, 0, 2, 0, 0, 0, 0, 1, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 8, 4, 4, 2, 0, 2, 0, 0, 0, 0, 0, 1, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Author

Gary W. Adamson, Apr 20 2007

Keywords

Comments

row sums = A129527: (1, 3, 3, 7, 5, 9, 7, 15, ...). Left column = phi(2*n), A062570: (1, 2, 2, 4, 4, 4, 6, 8, ...).

Examples

			First few rows of the triangle:
  1;
  2, 1;
  2, 0, 1;
  4, 2, 0, 1;
  4, 0, 0, 0, 1;
  4, 2, 2, 0, 0, 1;
  6, 0, 0, 0, 0, 0, 1;
  8, 4, 0, 2, 0, 0, 0, 1;
  ...
		

Crossrefs

Column 1 is A062570.
Row sums are A129527 (inverse Moebius transform of A062570).

Programs

  • PARI
    T(n, k)=if(n%k, 0, eulerphi(2*n/k)) \\ Andrew Howroyd, Aug 07 2018

Formula

Equals A054523 * A115361 as infinite lower triangular matrices.
T(n,k) = phi(2*n/k) for k | n, T(n,k) = 0 otherwise. - Andrew Howroyd, Aug 07 2018

Extensions

Terms a(56) and beyond from Andrew Howroyd, Aug 07 2018

A373187 Expansion of Sum_{k>=0} x^(4^k) / (1 - x^(4^k))^4.

Original entry on oeis.org

1, 4, 10, 21, 35, 56, 84, 124, 165, 220, 286, 374, 455, 560, 680, 837, 969, 1140, 1330, 1575, 1771, 2024, 2300, 2656, 2925, 3276, 3654, 4144, 4495, 4960, 5456, 6108, 6545, 7140, 7770, 8601, 9139, 9880, 10660, 11700, 12341, 13244, 14190, 15466, 16215, 17296, 18424
Offset: 1

Author

Seiichi Manyama, May 27 2024

Keywords

Crossrefs

Formula

G.f. A(x) satisfies A(x) = x/(1 - x)^4 + A(x^4).
a(4*n+1) = A000292(4*n+1), a(4*n+2) = A000292(4*n+2), a(4*n+3) = A000292(4*n+3) and a(4*n+4) = A000292(4*n+4) + a(n+1) for n >= 0.

A328408 G.f. A(x) satisfies: A(x) = A(x^2) + x * (1 + 4*x + x^2) / (1 - x)^4.

Original entry on oeis.org

1, 9, 27, 73, 125, 243, 343, 585, 729, 1125, 1331, 1971, 2197, 3087, 3375, 4681, 4913, 6561, 6859, 9125, 9261, 11979, 12167, 15795, 15625, 19773, 19683, 25039, 24389, 30375, 29791, 37449, 35937, 44217, 42875, 53217, 50653, 61731, 59319, 73125, 68921, 83349, 79507, 97163, 91125
Offset: 1

Author

Ilya Gutkovskiy, Oct 14 2019

Keywords

Programs

  • Magma
    [n eq 1 select 1 else IsOdd(n) select n^3 else Self(n div 2)+n^3 :n in [1..45]]; // Marius A. Burtea, Oct 15 2019
  • Mathematica
    nmax = 45; CoefficientList[Series[Sum[x^(2^k) (1 + 4 x^(2^k) + x^(2^(k + 1)))/(1 - x^(2^k))^4, {k, 0, Floor[Log[2, nmax]] + 1}], {x, 0, nmax}], x] // Rest
    a[n_] := If[EvenQ[n], a[n/2] + n^3, n^3]; Table[a[n], {n, 1, 45}]
    Table[DivisorSum[n, Boole[IntegerQ[Log[2, n/#]]] #^3 &], {n, 1, 45}]
    f[p_, e_] :=p^(3*e); f[2, e_] := (8^(e+1)-1)/7; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 23 2023 *)

Formula

G.f.: Sum_{k>=0} x^(2^k) * (1 + 4*x^(2^k) + x^(2^(k+1))) / (1 - x^(2^k))^4.
G.f.: (1/7) * Sum_{k>=1} J_3(2*k) * x^k / (1 - x^k), where J_3() is the Jordan function (A059376).
Dirichlet g.f.: zeta(s-3) / (1 - 2^(-s)).
a(2*n) = a(n) + 8*n^3, a(2*n+1) = (2*n + 1)^3.
a(n) = Sum_{d|n} A209229(n/d) * d^3.
Product_{n>=1} (1 + x^n)^a(n) = g.f. for A023872.
Sum_{k=1..n} a(k) ~ 4*n^4/15. - Vaclav Kotesovec, Oct 15 2019
Multiplicative with a(2^e) = (8^(e+1)-1)/7, and a(p^e) = p^(3*e) for an odd prime p. - Amiram Eldar, Oct 23 2023

A338045 G.f.: Sum_{k>=0} x^(2^k) / (1 - x^(2^k))^3.

Original entry on oeis.org

1, 4, 6, 14, 15, 27, 28, 50, 45, 70, 66, 105, 91, 133, 120, 186, 153, 216, 190, 280, 231, 319, 276, 405, 325, 442, 378, 539, 435, 585, 496, 714, 561, 748, 630, 882, 703, 931, 780, 1100, 861, 1134, 946, 1309, 1035, 1357, 1128, 1581, 1225, 1600, 1326, 1820, 1431, 1863, 1540
Offset: 1

Author

Ilya Gutkovskiy, Oct 08 2020

Keywords

Programs

  • Mathematica
    nmax = 55; CoefficientList[Series[Sum[x^(2^k) /(1 - x^(2^k))^3, {k, 0, Floor[Log[2, nmax]] + 1}], {x, 0, nmax}], x] // Rest
    a[n_] := If[EvenQ[n], a[n/2] + n (n + 1)/2, n (n + 1)/2]; Table[a[n], {n, 1, 55}]
    Table[(1/2) DivisorSum[n, Boole[IntegerQ[Log[2, n/#]]] # (# + 1) &], {n, 1, 55}]

Formula

G.f. A(x) satisfies: A(x) = A(x^2) + x / (1 - x)^3.
a(2*n) = a(n) + A014105(n), a(2*n+1) = A000384(n+1).
a(n) = (1/2) * Sum_{d|n} A209229(n/d) * d * (d + 1).
a(n) = Sum_{d|n} A195094(d).
Product_{n>=1} (1 + x^n)^a(n) = g.f. for A000294.
Previous Showing 11-20 of 30 results. Next