A212072
G.f. satisfies: A(x) = (1 + x*A(x)^2)^3.
Original entry on oeis.org
1, 3, 21, 190, 1950, 21576, 250971, 3025308, 37456650, 473498025, 6085977381, 79296104784, 1044955576496, 13903071489300, 186507160795350, 2519857658331576, 34258270557555282, 468322722628414290, 6433538749783033350, 88767899653496377050, 1229626632793564911906
Offset: 0
G.f.: A(x) = 1 + 3*x + 21*x^2 + 190*x^3 + 1950*x^4 + 21576*x^5 + ...
Related expansions:
A(x)^2 = 1 + 6*x + 51*x^2 + 506*x^3 + 5481*x^4 + ... + A002295(n+1)*x^n + ...
A(x)^(1/3) = 1 + x + 6*x^2 + 51*x^3 + 506*x^4 + ... + A002295(n)*x^n + ...
- Michael De Vlieger, Table of n, a(n) for n = 0..855
- Alexander Burstein and Louis W. Shapiro, Pseudo-involutions in the Riordan group, arXiv:2112.11595 [math.CO], 2021.
- Clemens Heuberger, Sarah J. Selkirk, and Stephan Wagner, Enumeration of Generalized Dyck Paths Based on the Height of Down-Steps Modulo k, arXiv:2204.14023 [math.CO], 2022.
-
Table[(3 Binomial[#, n])/# &[6 n + 3], {n, 0, 20}] (* Michael De Vlieger, May 13 2022 *)
-
{a(n)=binomial(6*n+3,n) * 3/(6*n+3)}
for(n=0, 40, print1(a(n), ", "))
-
{a(n)=local(A=1+3*x); for(i=1, n, A=(1+x*A^2)^3+x*O(x^n)); polcoeff(A, n)}
A235340
a(n) = 10*binomial(11*n+10,n)/(11*n+10).
Original entry on oeis.org
1, 10, 155, 2870, 58565, 1270752, 28765650, 671650110, 16057800980, 391139588190, 9672348219898, 242182964452000, 6127720969229265, 156431295179478200, 4024231652469275640, 104218796026870015374, 2714941275486017847825
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906 [math.CO], 2007; Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Elżbieta Liszewska and Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
-
[10*Binomial(11*n+10, n)/(11*n+10): n in [0..30]];
-
Table[10 Binomial[11 n + 10, n]/(11 n + 10), {n, 0, 30}]
-
a(n) = 10*binomial(11*n+10,n)/(11*n+10);
-
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^(11/10))^10+x*O(x^n)); polcoeff(B, n)}
A386368
a(n) = Sum_{k=0..n-1} binomial(6*k,k) * binomial(6*n-6*k-2,n-k-1).
Original entry on oeis.org
0, 1, 16, 246, 3736, 56421, 849432, 12763878, 191548464, 2871970110, 43031833656, 644432826478, 9646983339456, 144366433138955, 2159869510669320, 32306874783230556, 483151884326658144, 7224464127509984490, 108011596038055519680, 1614676987907480393940
Offset: 0
(1/6) * log( Sum_{k>=0} binomial(6*k,k)*x^k ) = x + 8*x^2 + 82*x^3 + 934*x^4 + 56421*x^5/5 + ...
-
A386368 := proc(n::integer)
add(binomial(6*k,k)*binomial(6*n-6*k-2,n-k-1),k=0..n-1) ;
end proc:
seq(A386368(n),n=0..80) ; # R. J. Mathar, Jul 30 2025
-
a(n) = sum(k=0, n-1, binomial(6*k, k)*binomial(6*n-6*k-2, n-k-1));
-
my(N=20, x='x+O('x^N), g=x*sum(k=0, N, binomial(6*k+4, k)/(k+1)*x^k)); concat(0, Vec(g*(1-g)/(1-6*g)^2))
A371519
G.f. A(x) satisfies A(x) = 1 / (1 - x*A(x) / (1-x))^5.
Original entry on oeis.org
1, 5, 45, 470, 5375, 65231, 825225, 10764185, 143739440, 1955340360, 27001732972, 377530388235, 5333865386885, 76031188364860, 1092117166466660, 15792298241897649, 229704197116753825, 3358528175751886765, 49333470827844265285, 727680248026484478405
Offset: 0
-
a(n) = sum(k=0, n, binomial(n-1, n-k)*binomial(6*k+4, k)/(k+1));
A386567
a(n) = Sum_{k=0..n-1} binomial(6*k-1,k) * binomial(6*n-6*k,n-k-1).
Original entry on oeis.org
0, 1, 17, 268, 4129, 62955, 954392, 14417376, 217279857, 3269099590, 49125066135, 737516631908, 11064270530632, 165889863957065, 2486052264852180, 37241727274394640, 557707191712371729, 8349517132932620730, 124971965902300790390, 1870139909398530770760
Offset: 0
(1/5) * log( Sum_{k>=0} binomial(6*k-1,k)*x^k ) = x + 17*x^2/2 + 268*x^3/3 + 4129*x^4/4 + 12591*x^5 + ...
-
a(n) = sum(k=0, n-1, binomial(6*k-1, k)*binomial(6*n-6*k, n-k-1));
-
my(N=20, x='x+O('x^N), g=sum(k=0, N, binomial(6*k, k)/(5*k+1)*x^k)); concat(0, Vec(g*(g-1)/(6-5*g)^2))
A233827
a(n) = 8*binomial(6*n+8,n)/(6*n+8).
Original entry on oeis.org
1, 8, 76, 800, 8990, 105672, 1283464, 15981504, 202927725, 2617624680, 34206162848, 451872681728, 6024664312030, 80964348872400, 1095590286231120, 14915165412813184, 204140673966231870, 2807362363541687280, 38772186055550141700
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
-
[8*Binomial(6*n+8, n)/(6*n+8): n in [0..30]];
-
Table[8 Binomial[6 n + 8, n]/(6 n + 8), {n, 0, 30}]
-
a(n) = 8*binomial(6*n+8,n)/(6*n+8);
-
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^(6/8))^8+x*O(x^n)); polcoeff(B, n)}
A233829
a(n) = 3*binomial(6*n+9,n)/(2*n+3).
Original entry on oeis.org
1, 9, 90, 975, 11160, 132867, 1629012, 20430900, 260907075, 3381098545, 44352058608, 587787511779, 7858257798300, 105855415586550, 1435361957277480, 19576154604317304, 268364706225271110, 3695862686045572350, 51108790709588823150
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
-
[3*Binomial(6*n+9, n)/(2*n+3): n in [0..30]];
-
Table[3 Binomial[6 n + 9, n]/(2 n + 3), {n, 0, 30}]
-
a(n) = 3*binomial(6*n+9,n)/(2*n+3);
-
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^(2/3))^9+x*O(x^n)); polcoeff(B, n)}
A233830
a(n) = 5*binomial(6*n+10,n)/(3*n+5).
Original entry on oeis.org
1, 10, 105, 1170, 13640, 164502, 2036265, 25727800, 330482295, 4303216330, 56672074888, 753573733050, 10103474312100, 136435868978220, 1854009194816745, 25333847134998864, 347880174736462550, 4798137522234602700, 66441427922465470095, 923346006310186106010, 12873823246049001482400
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
-
[5*Binomial(6*n+10, n)/(3*n+5): n in [0..30]];
-
Table[5 Binomial[6 n + 10, n]/(3 n + 5), {n, 0, 30}]
-
a(n) = 5*binomial(6*n+10,n)/(3*n+5);
-
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^(3/5))^10+x*O(x^n)); polcoeff(B, n)}
A386379
a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/5)} a(5*k) * a(n-1-5*k).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 13, 21, 30, 40, 51, 114, 190, 280, 385, 506, 1150, 1950, 2925, 4095, 5481, 12586, 21576, 32736, 46376, 62832, 145299, 250971, 383838, 548340, 749398, 1741844, 3025308, 4654320, 6690585, 9203634, 21475146, 37456650, 57887550
Offset: 0
-
apr(n, p, r) = r*binomial(n*p+r, n)/(n*p+r);
a(n) = apr(n\5, 6, n%5+1);
A386558
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals: A(n,k) = binomial((k+1)*n+k-1,n)/(n+1).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 7, 5, 0, 1, 4, 15, 30, 14, 0, 1, 5, 26, 91, 143, 42, 0, 1, 6, 40, 204, 612, 728, 132, 0, 1, 7, 57, 385, 1771, 4389, 3876, 429, 0, 1, 8, 77, 650, 4095, 16380, 32890, 21318, 1430, 0, 1, 9, 100, 1015, 8184, 46376, 158224, 254475, 120175, 4862, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 2, 7, 15, 26, 40, 57, ...
0, 5, 30, 91, 204, 385, 650, ...
0, 14, 143, 612, 1771, 4095, 8184, ...
0, 42, 728, 4389, 16380, 46376, 109668, ...
0, 132, 3876, 32890, 158224, 548340, 1533939, ...
Columns k=0..10 give
A000007,
A000108,
A006013,
A006632,
A118971,
A130564(n+1),
A130565(n+1),
A234466,
A234513,
A234573,
A235340.
Comments