A319577
a(n) = (4/45)*n*(n - 2)*(n - 1)*(n^3 - 12*n^2 + 47*n - 15).
Original entry on oeis.org
0, 0, 0, 24, 96, 240, 544, 1288, 3136, 7392, 16320, 33528, 64416, 116688, 200928, 331240, 525952, 808384, 1207680, 1759704, 2508000, 3504816, 4812192, 6503112, 8662720, 11389600, 14797120, 19014840, 24189984, 30488976, 38099040, 47229864, 58115328, 71015296
Offset: 0
-
a := n -> (4/45)*n*(n - 2)*(n - 1)*(n^3 - 12*n^2 + 47*n - 15):
seq(a(n), n=0..41);
-
A319577[n_]:=4/45*n*(n-2)*(n-1)*(n^3-12*n^2+47*n-15); Array[A319577, 50, 0] (*or*)
LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 0, 0, 24, 96, 240, 544}, 50] (* Paolo Xausa, Feb 20 2024 *)
-
concat([0,0,0], Vec(8*x^3*(3 - 9*x + 9*x^2 + 5*x^3) / (1 - x)^7 + O(x^40))) \\ Colin Barker, Oct 02 2018
A130811
If X_1,...,X_n is a partition of a 2n-set X into 2-blocks then a(n) is equal to the number of 5-subsets of X containing none of X_i, (i=1,...n).
Original entry on oeis.org
32, 192, 672, 1792, 4032, 8064, 14784, 25344, 41184, 64064, 96096, 139776, 198016, 274176, 372096, 496128, 651168, 842688, 1076768, 1360128, 1700160, 2104960, 2583360, 3144960, 3800160, 4560192, 5437152, 6444032, 7594752, 8904192
Offset: 5
Cf.
A038207,
A000079,
A001787,
A001788,
A001789,
A003472,
A054849,
A002409,
A054851,
A140325,
A140354,
A046092,
A130809,
A130810. -
Zerinvary Lajos, Aug 05 2008
-
[Binomial(n,n-5)*2^5: n in [5..40]]; // Vincenzo Librandi, Jul 09 2015
-
a:=n->binomial(2*n,5)+(2*n-4)*binomial(n,2)-n*binomial(2*n-2,3)
seq(binomial(n,n-5)*2^5,n=5..34); # Zerinvary Lajos, Dec 07 2007
seq(binomial(n+4, 5)*2^5, n=1..22); # Zerinvary Lajos, Aug 05 2008
-
Table[Binomial[2 n, 5] + (2 n - 4) Binomial[n, 2] - n Binomial[2 n - 2, 3], {n, 5, 40}] (* Vincenzo Librandi, Jul 09 2015 *)
A359202
Number of (bidimensional) faces of regular m-polytopes for m >= 3.
Original entry on oeis.org
4, 6, 8, 10, 12, 20, 24, 32, 35, 56, 80, 84, 96, 120, 160, 165, 220, 240, 280, 286, 364, 448, 455, 560, 672, 680, 720, 816, 960, 969, 1140, 1200, 1320, 1330, 1540, 1760, 1771, 1792, 2024, 2288, 2300, 2600, 2912, 2925, 3276, 3640, 3654, 4060, 4480, 4495, 4608
Offset: 1
6 is a term since a cube has 6 faces.
A360604
Triangle read by rows. T(n, k) = 2^binomial(n - k, 2) * binomial(n - 1, k - 1).
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 8, 6, 3, 1, 0, 64, 32, 12, 4, 1, 0, 1024, 320, 80, 20, 5, 1, 0, 32768, 6144, 960, 160, 30, 6, 1, 0, 2097152, 229376, 21504, 2240, 280, 42, 7, 1, 0, 268435456, 16777216, 917504, 57344, 4480, 448, 56, 8, 1
Offset: 0
Triangle T(n, k) starts:
[0] 1;
[1] 0, 1;
[2] 0, 1, 1;
[3] 0, 2, 2, 1;
[4] 0, 8, 6, 3, 1;
[5] 0, 64, 32, 12, 4, 1;
[6] 0, 1024, 320, 80, 20, 5, 1;
[7] 0, 32768, 6144, 960, 160, 30, 6, 1;
[8] 0, 2097152, 229376, 21504, 2240, 280, 42, 7, 1;
-
T := (n, k) -> 2^binomial(n - k, 2) * binomial(n-1, k-1):
for n from 0 to 9 do seq(T(n, k), k = 0..n) od;
A371532
Centered cuboctahedral numbers: the number of integer triples (x,y,z) such that max(|x|,|y|,|z|) <= n and |x|+|y|+|z| <= 2n.
Original entry on oeis.org
1, 19, 93, 263, 569, 1051, 1749, 2703, 3953, 5539, 7501, 9879, 12713, 16043, 19909, 24351, 29409, 35123, 41533, 48679, 56601, 65339, 74933, 85423, 96849, 109251, 122669, 137143, 152713, 169419, 187301, 206399, 226753, 248403, 271389, 295751, 321529, 348763
Offset: 0
The a(1) = 19 lattice points are all permutations of the points (0,0,0), (0,0,1), and (0,1,1), where any number of the coordinates can also be made negative (e.g., (1,-1,0)).
-
Array[(20*#^3 + 24*#^2 + 10*# + 3)/3 &, 50, 0] (* or *)
LinearRecurrence[{4, -6, 4, -1}, {1, 19, 93, 263}, 50] (* Paolo Xausa, Apr 02 2024 *)
-
def A371532(n): return n*(n*(5*n+6<<2)+10)//3+1 # Chai Wah Wu, Apr 02 2024
A130813
If X_1,...,X_n is a partition of a 2n-set X into 2-blocks then a(n) is equal to the number of 7-subsets of X containing none of X_i, (i=1,...n).
Original entry on oeis.org
128, 1024, 4608, 15360, 42240, 101376, 219648, 439296, 823680, 1464320, 2489344, 4073472, 6449664, 9922560, 14883840, 21829632, 31380096, 44301312, 61529600, 84198400, 113667840, 151557120, 199779840, 260582400, 336585600, 430829568
Offset: 7
Cf.
A038207,
A000079,
A001787,
A001788,
A001789,
A003472,
A054849,
A002409,
A054851,
A140325,
A140354,
A046092,
A130809,
A130810,
A130811,
A130812. -
Zerinvary Lajos, Aug 05 2008
-
[Binomial(n,n-7)*2^7: n in [7..40]]; // Vincenzo Librandi, Jul 09 2015
-
a:=n->binomial(2*n,7)+binomial(n,2)*binomial(2*n-4,3)-n*binomial(2*n-2,5)-(2*n-6)*binomial(n,3);
seq(binomial(n,n-7)*2^7,n=7..32); # Zerinvary Lajos, Dec 07 2007
seq(binomial(n+6, 7)*2^7, n=1..22); # Zerinvary Lajos, Aug 05 2008
-
Table[Binomial[n, n - 7] 2^7, {n, 7, 40}] (* Vincenzo Librandi, Jul 09 2015 *)
A185342
Triangle of successive recurrences in columns of A117317(n).
Original entry on oeis.org
2, 4, -4, 6, -12, 8, 8, -24, 32, -16, 10, -40, 80, -80, 32, 12, -60, 160, -240, 192, -64, 14, -84, 280, -560, 672, -448, 128, 16, -112, 448, -1120, 1792, -1792, 1024, -256, 18, -144, 672, -2016, 4032, -5376, 4608, -2304, 512, 20, -180, 960, -3360, 8064
Offset: 0
Triangle T(n,k),for 1<=k<=n, begins :
2 (1)
4 -4 (2)
6 -12 8 (3)
8 -24 32 -16 (4)
10 -40 80 -80 32 (5)
12 -60 160 -240 192 -64 (6)
14 -84 280 -560 672 -448 128 (7)
16 -112 448 -1120 1792 -1792 1024 -256 (8)
Successive rows can be divided by A171977.
-
Table[(-1)*Binomial[n, k]*(-2)^k, {n, 1, 20}, {k, 1, n}] // Flatten (* G. C. Greubel, Jun 27 2017 *)
-
for(n=1,20, for(k=1,n, print1((-2)^(k+1)*binomial(n,k)/2, ", "))) \\ G. C. Greubel, Jun 27 2017
A206022
Riordan array (1, x*exp(arcsinh(-2*x))).
Original entry on oeis.org
1, 0, 1, 0, -2, 1, 0, 2, -4, 1, 0, 0, 8, -6, 1, 0, -2, -8, 18, -8, 1, 0, 0, 0, -32, 32, -10, 1, 0, 4, 8, 30, -80, 50, -12, 1, 0, 0, 0, 0, 128, -160, 72, -14, 1, 0, -10, -16, -28, -112, 350, -280, 98, -16, 1, 0, 0, 0
Offset: 0
Triangle begins:
1
0, 1
0, -2, 1
0, 2, -4, 1
0, 0, 8, -6, 1,
0, -2, -8, 18, -8, 1
0, 0, 0, -32, 32, -10, 1
0, 4, 8, 30, -80, 50, -12, 1
0, 0, 0, 0, 128, -160, 72, -14, 1
0, -10, -16, -28, -112, 350, -280, 98, -16, 1
0, 0, 0, 0, 0, -512, 768, -448, 128, -18, 1
0, 28, 40, 54, 96, 420, -1512, 1470, -672, 162, -20, 1
A276985
Triangle read by rows: T(n,k) = number of k-dimensional elements in an n-dimensional cross-polytope, n>=1, 0<=k
Original entry on oeis.org
2, 4, 4, 6, 12, 8, 8, 24, 32, 16, 10, 40, 80, 80, 32, 12, 60, 160, 240, 192, 64, 14, 84, 280, 560, 672, 448, 128, 16, 112, 448, 1120, 1792, 1792, 1024, 256, 18, 144, 672, 2016, 4032, 5376, 4608, 2304, 512, 20, 180, 960, 3360, 8064, 13440, 15360, 11520, 5120
Offset: 1
T(4, 1..4) = 8, 24, 32, 16, because the 16-cell has 8 0-faces (vertices), 24 1-faces (edges), 32 2-faces (faces) and 16 3-faces (cells).
Triangle starts
2
4, 4
6, 12, 8
8, 24, 32, 16
10, 40, 80, 80, 32
12, 60, 160, 240, 192, 64
14, 84, 280, 560, 672, 448, 128
16, 112, 448, 1120, 1792, 1792, 1024, 256
18, 144, 672, 2016, 4032, 5376, 4608, 2304, 512
20, 180, 960, 3360, 8064, 13440, 15360, 11520, 5120, 1024
- H. S. M. Coxeter, Regular Polytopes, Third Edition, Dover Publications, 1973, ISBN 9780486141589.
-
Table[2^(k + 1) Binomial[n, k + 1], {n, 10}, {k, 0, n - 1}] // Flatten (* Michael De Vlieger, Sep 25 2016 *)
-
T(n, k) = 2^(k+1)*binomial(n, k+1)
trianglerows(n) = for(x=1, n, for(y=0, x-1, print1(T(x, y), ", ")); print(""))
trianglerows(10) \\ print initial 10 rows of triangle
Comments