cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A319365 Expansion of e.g.f. exp(x^4/4)/(1 - x).

Original entry on oeis.org

1, 1, 2, 6, 30, 150, 900, 6300, 51660, 464940, 4649400, 51143400, 614968200, 7994586600, 111924212400, 1678863186000, 26865216378000, 456708678426000, 8220756211668000, 156194368021692000, 3123907159441068000, 65602050348262428000, 1443245107661773416000, 33194637476220788568000
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 17 2018

Keywords

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x^4/4)/(1-x))); [Factorial(n-1)*b[n]: n in [1..m]]; // Vincenzo Librandi, Dec 28 2018
  • Maple
    f:= gfun:-rectoproc({(n+1)*(n+2)*(n+3)*(n+4)*a(n)-(n+2)*(n+3)*(n+4)*a(n+1)-(n+5)*a(n+4)+a(n+5)},seq(a(i)=[1,1,2,6,30][i+1],i=0..4)},a(n),remember):
    map(f, [$0..30]); # Robert Israel, Dec 28 2018
  • Mathematica
    nmax = 23; CoefficientList[Series[Exp[x^4/4]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!

Formula

a(n) ~ n!*exp(1/4).
(n+1)*(n+2)*(n+3)*(n+4)*a(n)-(n+2)*(n+3)*(n+4)*a(n+1)-(n+5)*a(n+4)+a(n+5)=0. - Robert Israel, Dec 28 2018

A316666 Number of simple relaxed compacted binary trees of right height at most one with no sequences on level 1 and no final sequences on level 0.

Original entry on oeis.org

1, 0, 1, 3, 15, 87, 597, 4701, 41787, 413691, 4512993, 53779833, 695000919, 9680369943, 144560191149, 2303928046437, 39031251610227, 700394126116851, 13270625547477177, 264748979672169681, 5547121478845459983, 121784530649198053263, 2795749225338111831429, 66981491857058929294653
Offset: 0

Views

Author

Michael Wallner, Jul 10 2018

Keywords

Comments

A relaxed compacted binary tree of size n is a directed acyclic graph consisting of a binary tree with n internal nodes, one leaf, and at most n pointers. It is constructed from a binary tree of size n, where the first leaf in a post-order traversal is kept and all other leaves are replaced by pointers. These links may point to any node that has already been visited by the post-order traversal. It is called simple if for nodes with two pointers both point to the same node. The right height is the maximal number of right-edges (or right children) on all paths from the root to any leaf after deleting all pointers. See the Wallner link.
a(n) is one of two "basis" sequences for sequences of the form a(0)=a, a(1)=b, a(n) = n*a(n-1) + (n-1)*a(n-2), the second basis sequence being A096654 (with 0 appended as a(0)). The sum of these sequences is listed as A000255. - Gary Detlefs, Dec 11 2018

Crossrefs

Cf. A000032, A000246, A001879, A051577, A213527, A288950, A288952, A288953 (subclasses of relaxed compacted binary trees of right height at most one, see the Wallner link).
Cf. A000166, A000255, A000262, A052852, A123023, A130905, A176408, A201203 (variants of simple relaxed compacted binary trees of right height at most one, see the Wallner link).

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( (3*Exp(-x) + x-2)/(1-x)^2 )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Dec 12 2018
  • Maple
    aseq := n-> 3*round((n+2)*n!/exp(1))-(n+2)*n!: bseq := n-> (n+2)*n!- 2* round((n+2)*n!/exp(1)): s := (a,b,n)-> a*aseq(n) + b*bseq( n): seq(s(1,0,n),n = 0..20);  # Gary Detlefs, Dec 11 2018
  • Mathematica
    terms = 24;
    CoefficientList[(3E^-z+z-2)/(1-z)^2 + O[z]^terms, z] Range[0, terms-1]! (* Jean-François Alcover, Sep 14 2018 *)
  • PARI
    Vec(serlaplace((3*exp(-x + O(x^25)) + x - 2)/(1 - x)^2)) \\ Andrew Howroyd, Jul 10 2018
    

Formula

E.g.f.: (3*exp(-z)+z-2)/(1-z)^2.
a(n) ~ (3*exp(-1) - 1) * n * n!. - Vaclav Kotesovec, Jul 12 2018
a(n) = 3*round((n+2)*n!/e) - (n+2)*n!. - Gary Detlefs, Dec 11 2018
From Seiichi Manyama, Apr 25 2025: (Start)
a(n) = 3 * A000255(n) - n! - (n+1)!.
a(0) = 1, a(1) = 0; a(n) = n*a(n-1) + (n-1)*a(n-2). (End)

A373770 Expansion of e.g.f. exp(x^2 / (2 * (1 - x))) / (1 - x).

Original entry on oeis.org

1, 1, 3, 12, 63, 405, 3075, 26880, 265545, 2922885, 35447895, 469396620, 6736095135, 104102463465, 1723322736135, 30416726340000, 570089983287825, 11306156398562025, 236514323713142475, 5204122351983254700, 120139520273298100575, 2903216115946088267325
Offset: 0

Views

Author

Seiichi Manyama, Jun 18 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n\2, binomial(n-k, n-2*k)/(2^k*k!));

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} binomial(n-k,n-2*k)/(2^k * k!).
From Vaclav Kotesovec, Jun 18 2024: (Start)
Recurrence: 2*a(n) = 2*(2*n-1)*a(n-1) - 2*(n-2)*(n-1)*a(n-2) - (n-2)*(n-1)*a(n-3).
a(n) ~ 2^(-1/4) * exp(-3/4 + sqrt(2*n) - n) * n^(n + 1/4) * (1 + 7/(6*sqrt(2*n))). (End)

A373771 Expansion of e.g.f. exp(x^2 / (2 * (1 - x)^3)) / (1 - x).

Original entry on oeis.org

1, 1, 3, 18, 147, 1425, 15855, 200130, 2838465, 44767485, 777046095, 14705245170, 301014595035, 6621102973485, 155640761791515, 3891902825660850, 103115436832433025, 2884715829245475225, 84950805438277854075, 2626194012669689512050
Offset: 0

Views

Author

Seiichi Manyama, Jun 18 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n\2, binomial(n+k, n-2*k)/(2^k*k!));

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} binomial(n+k,n-2*k)/(2^k * k!).

A130908 E.g.f.: exp(x+x^2/2!+x^3/3!)/(1-x).

Original entry on oeis.org

1, 2, 6, 23, 106, 576, 3622, 26006, 210828, 1910096, 19162096, 211095732, 2534829376, 32962249568, 461527198056, 6923249156336, 110774157354832, 1883174989346016, 33897247428278368, 644048388555567536, 12880972761058252896, 270500465268345299072, 5951010522336442007776, 136873244273143429751328
Offset: 0

Views

Author

Karol A. Penson, Jun 08 2007

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[Exp[x+x^2/2!+x^3/3!]/(1-x),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jun 01 2014 *)
  • PARI
    x='x+O('x^66); Vec(serlaplace(exp(x+x^2/2!+x^3/3!)/(1-x))) \\ Joerg Arndt, Jun 01 2014

Formula

a(n) ~ n! * exp(5/3). - Vaclav Kotesovec, Aug 04 2014
D-finite with recurrence +2*a(n) +2*(-n-1)*a(n-1) +(n-1)*(n-2)*a(n-3) +(n-1)*(n-2)*(n-3)*a(n-4)=0. - R. J. Mathar, Aug 20 2021

Extensions

Incorrect initial term 1 removed by Harvey P. Dale, Jun 01 2014
Previous Showing 11-15 of 15 results.