A132033 Product{0<=k<=floor(log_9(n)), floor(n/9^k)}, n>=1.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 36, 38, 40, 42, 44, 46, 48, 50, 52, 81, 84, 87, 90, 93, 96, 99, 102, 105, 144, 148, 152, 156, 160, 164, 168, 172, 176, 225, 230, 235, 240, 245, 250, 255, 260, 265, 324, 330, 336, 342, 348, 354, 360, 366, 372
Offset: 1
Examples
a(85)=floor(85/9^0)*floor(85/9^1)*floor(85/9^2)=85*9*1=765; a(88)=792 since 88=107(base-9) and so a(88)=107*10*1(base-9)=88*9*1=792.
Crossrefs
Programs
-
Mathematica
Table[Product[Floor[n/9^k],{k,0,Floor[Log[9,n]]}],{n,62}] (* James C. McMahon, Mar 03 2025 *)
Formula
Recurrence: a(n)=n*a(floor(n/9)); a(n*9^m)=n^m*9^(m(m+1)/2)*a(n).
a(k*9^m)=k^(m+1)*9^(m(m+1)/2), for 0
Asymptotic behavior: a(n)=O(n^((1+log_9(n))/2)); this follows from the inequalities below.
a(n)<=b(n), where b(n)=n^(1+floor(log_9(n)))/9^((1+floor(log_9(n)))*floor(log_9(n))/2); equality holds for n=k*9^m, 0=0. b(n) can also be written n^(1+floor(log_9(n)))/9^A000217(floor(log_9(n))).
Also: a(n)<=3^(1/4)*n^((1+log_9(n))/2)=1.316074013...*9^A000217(log_9(n)), equality holds for n=3*9^m, m>=0.
a(n)>c*b(n), where c=0.4689451783670236932832800... (see constant A132024).
Also: a(n)>c*2^((1-log_9(2))/2)*n^((1+log_9(n))/2)=0.4689451783670...*1.267747616...*9^A000217(log_9(n)).
lim inf a(n)/b(n)=0.4689451783670236932832800..., for n-->oo.
lim sup a(n)/b(n)=1, for n-->oo.
lim inf a(n)/n^((1+log_9(n))/2)=0.4689451783670236932832800...*sqrt(2)/2^log_9(sqrt(2)), for n-->oo.
lim sup a(n)/n^((1+log_9(n))/2)=3^(1/4)=1.316074013..., for n-->oo.
lim inf a(n)/a(n+1)=0.4689451783670236932832800... for n-->oo (see constant A132025).
A132328 a(n) = Product_{k>0} (1+floor(n/3^k)).
1, 1, 1, 2, 2, 2, 3, 3, 3, 8, 8, 8, 10, 10, 10, 12, 12, 12, 21, 21, 21, 24, 24, 24, 27, 27, 27, 80, 80, 80, 88, 88, 88, 96, 96, 96, 130, 130, 130, 140, 140, 140, 150, 150, 150, 192, 192, 192, 204, 204, 204, 216, 216, 216, 399, 399, 399, 420, 420, 420, 441, 441, 441, 528
Offset: 0
Comments
If n is written in base-3 as n=d(m)d(m-1)d(m-2)...d(2)d(1)d(0) (where d(k) is the digit at position k) then a(n) is also the product (1+d(m)d(m-1)d(m-2)...d(2)d(1))*(1+d(m)d(m-1)d(m-2)...d(2))*...*(1+d(m)d(m-1)d(m-2))*(1+d(m)d(m-1))*(1+d(m)).
Examples
a(12)=(1+floor(12/3^1))*(1+floor(12/3^2))=5*2=10; a(19)=21 since 19=201(base-3) and so a(19)=(1+20)*(1+2)(base-3)=7*3=21.
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Maple
f:= proc(n) option remember; local t; t:= floor(n/3); (1+t)*procname(t) end proc: f(0):= 1: f(1):= 1: f(2):= 1: map(f, [$0..100]); # Robert Israel, Oct 20 2020
-
Mathematica
(* Using definition *) Table[Product[1 + Floor[n/3^k], {k, IntegerLength[n, 3] - 1}], {n, 0, 100}] (* Using recurrence -- faster *) a[0] = 1; a[n_] := a[n] = (1 + #)*a[#] & [Floor[n/3]]; Table[a[n], {n, 0, 100}] (* Paolo Xausa, Sep 23 2024 *)
Formula
Recurrence: a(n)=(1+floor(n/3))*a(floor(n/3)); a(3n)=(1+n)*a(n); a(n*3^m)=product{0<=k
a(k*3^m-j)=k^m*3^(m(m-1)/2), for 0=1. a(3^m)=p^(m(m-1)/2)*product{0<=k
Asymptotic behavior: a(n)=O(n^((log_3(n)-1)/p)); this follows from the inequalities below.
a(n)<=A132027(n)/(n+1)*product{0<=k<=floor(log_3(n)), 1+1/3^k}.
a(n)>=A132027(n)/((n+1)*product{0
a(n)A000217(log_3(n))/(n+1), where c=product{k>0, 1+1/3^k}=3.12986803713402307587769821345767... (see constant A132323).
a(n)>n^((1+log_3(n))/2)/(n+1)=3^A000217(log_3(n))/(n+1).
lim sup n*a(n)/A132027(n)=2*product{k>0, 1+1/3^k}=3.12986803713402307587769821345767..., for n-->oo (see constant A132323).
lim inf n*a(n)/A132027(n)=1/product{k>0, 1-1/3^k}=1/0.560126077927948944969792243314140014..., for n-->oo (see constant A100220).
lim inf a(n)/n^((1+log_3(n))/2)=1, for n-->oo.
lim sup a(n)/n^((1+log_3(n))/2)=2*product{k>0, 1+1/3^k}=3.12986803713402307587769821345767..., for n-->oo (see constant A132323).
lim inf a(n+1)/a(n)=2*product{k>0, 1+1/3^k}=3.12986803713402307587769821345767... for n-->oo (see constant A132323).
A132263 Product{0<=k<=floor(log_11(n)), floor(n/11^k)}, n>=1.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 99, 102, 105, 108, 111, 114, 117, 120, 123, 126, 129, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 275, 280, 285, 290, 295, 300, 305, 310
Offset: 1
Comments
If n is written in base-11 as n=d(m)d(m-1)d(m-2)...d(2)d(1)d(0) (where d(k) is the digit at position k) then a(n) is also the product d(m)d(m-1)d(m-2)...d(2)d(1)d(0)*d(m)d(m-1)d(m-2)...d(2)d(1)*d(m)d(m-1)d(m-2)...d(2)*...*d(m)d(m-1)d(m-2)*d(m)d(m-1)*d(m).
Examples
a(50)=floor(50/11^0)*floor(50/11^1)=50*4=200; a(63)=315 since 63=58(base-11) and so a(63)=58*5(base-11)=63*5=315.
Crossrefs
Formula
Recurrence: a(n)=n*a(floor(n/11)); a(n*11^m)=n^m*11^(m(m+1)/2)*a(n).
a(k*11^m)=k^(m+1)*11^(m(m+1)/2), for 0
Asymptotic behavior: a(n)=O(n^((1+log_11(n))/2)); this follows from the inequalities below.
a(n)<=b(n), where b(n)=n^(1+floor(log_11(n)))/p^((1+floor(log_11(n)))*floor(log_11(n))/2); equality holds for n=k*11^m, 0=0. b(n) can also be written n^(1+floor(log_11(n)))/11^A000217(floor(log_11(n))).
Also: a(n)<=3^((1-log_11(3))/2)*n^((1+log_11(n))/2)=1.346673852...^((1-log_11(3))/2)*11^A000217(log_11(n)), equality holds for n=3*11^m, m>=0.
a(n)>c*b(n), where c=0.4751041275076031053975644472... (see constant A132265).
Also: a(n)>c*(sqrt(2)/2^log_11(sqrt(2)))*n^((1+log_11(n))/2)=0.607848303...*11^00217(log_11(n)).
lim inf a(n)/b(n)=0.4751041275076031053975644472..., for n-->oo.
lim sup a(n)/b(n)=1, for n-->oo.
lim inf a(n)/n^((1+log_p(n))/2)=0.4751041275076031...*sqrt(2)/2^log_11(sqrt(2)), for n-->oo.
lim sup a(n)/n^((1+log_p(n))/2)=sqrt(3)/3^log_11(sqrt(3))=1.346673852..., for n-->oo.
lim inf a(n)/a(n+1)=0.4751041275076031053975644472... for n-->oo (see constant A132265).
A132264 Product{0<=k<=floor(log_12(n)), floor(n/12^k)}, n>=1.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 108, 111, 114, 117, 120, 123, 126, 129, 132, 135, 138, 141, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232, 236, 300, 305, 310, 315
Offset: 1
Comments
If n is written in base-12 as n=d(m)d(m-1)d(m-2)...d(2)d(1)d(0) (where d(k) is the digit at position k) then a(n) is also the product d(m)d(m-1)d(m-2)...d(2)d(1)d(0)*d(m)d(m-1)d(m-2)...d(2)d(1)*d(m)d(m-1)d(m-2)...d(2)*...*d(m)d(m-1)d(m-2)*d(m)d(m-1)*d(m).
Examples
a(50)=floor(50/12^0)*floor(50/12^1)=50*4=200. a(65)=325 since 65=55(base-12) and so a(65)=55*5(base-12)=65*5=325.
Crossrefs
Formula
The following formulas are given for a general parameter p considering the product of terms floor(n/p^k) for 0<=k<=floor(log_p(n)), where p=12 for this sequence.
Recurrence: a(n)=n*a(floor(n/p)); a(n*p^m)=n^m*p^(m(m+1)/2)*a(n).
a(k*p^m)=k^(m+1)*p^(m(m+1)/2), for 0
Asymptotic behavior: a(n)=O(n^((1+log_p(n))/2)); this follows from the inequalities below.
a(n)<=b(n), where b(n)=n^(1+floor(log_p(n)))/p^((1+floor(log_p(n)))*floor(log_p(n))/2); equality holds for n=k*p^m, 0=0. b(n) can also be written n^(1+floor(log_p(n)))/p^A000217(floor(log_p(n))).
Also: a(n)<=q^((1-log_p(q))/2)*n^((1+log_p(n))/2)=q^((1-log_p(q))/2)*p^A000217(log_p(n)), equality holds for n=q*p^m, m>=0, where q=floor(sqrt(p)+1/2). Also, equality holds for n=(q+1)*p^m, provided p is a A002378-number (in this case we have p=q*(q+1) and so q^((1-log_p(q))/2)=(q+1)^((1-log_p(q+1))/2)).
a(n)>c*b(n), where c=product{k>0, 1-1/(2*p^k)}=0.47735217025489380... (for p=12 see constant A132265).
Also: a(n)>c*(sqrt(2)/2^log_p(sqrt(2)))*n^((1+log_p(n))/2)=0.612870619...*p^A000217(log_p(n)), (p=12).
lim inf a(n)/b(n)=product{k>0, 1-1/(2*p^k)}=0.47735217025489380198334286365820..., for n-->oo (for p=12 see constant A132265).
lim sup a(n)/b(n)=1, for n-->oo.
lim inf a(n)/n^((1+log_p(n))/2)=(sqrt(2)/2^log_p(sqrt(2)))*product{k>0, 1-1/(2*p^k)}=0.612870619..., for n-->oo, (p=12).
lim sup a(n)/n^((1+log_p(n))/2)=sqrt(q)/q^log_p(sqrt(q))=1.358593737..., for n-->oo, (p=12, q=round(sqrt(p))=3).
lim inf a(n)/a(n+1)=product{k>0, 1-1/(2*p^k)}=0.47735217025489380... for n-->oo (for p=12 see constant A132265).
A132269 a(n) = Product_{k>=0} (1 + floor(n/2^k)).
1, 2, 6, 8, 30, 36, 56, 64, 270, 300, 396, 432, 728, 784, 960, 1024, 4590, 4860, 5700, 6000, 8316, 8712, 9936, 10368, 18200, 18928, 21168, 21952, 27840, 28800, 31744, 32768, 151470, 156060, 170100, 174960, 210900, 216600, 234000, 240000, 340956, 349272, 374616
Offset: 0
Keywords
Comments
If n is written in base 2 as n=d(m)d(m-1)d(m-2)...d(2)d(1)d(0) (where d(k) is the digit at position k) then a(n) is also the product (1+d(m)d(m-1)d(m-2)...d(2)d(1)d(0))*(1+d(m)d(m-1)d(m-2)...d(2)d(1))*(1+d(m)d(m-1)d(m-2)...d(2))*...*(1+d(m)d(m-1)d(m-2))*(1+d(m)d(m-1))*(1+d(m)).
From Gary W. Adamson, Aug 25 2016: (Start)
Given the following production matrix M =
1, 0, 0, 0, 0, ...
2, 0, 0, 0, 0, ...
0, 3, 0, 0, 0, ...
0, 4, 0, 0, 0, ...
0, 0, 5, 0, 0, ...
0, 0, 6, 0, 0, ...
0, 0, 0, 7, 0, ...
...
the sequence is the left-shifted vector as lim_{n->infinity} M^n. (End)
Examples
a(10) = (1 + floor(10/2^0))*(1 + floor(10/2^1))*(1 + floor(10/2^2))*(1 + floor(10/2^3)) = 11*6*3*2 = 396; a(17) = 4860 since 17 = 10001_2 and so a(17) = (1+10001_2)*(1+1000_2)*(1+100_2)*(1+10_2)*(1+1) = 18*9*5*3*2 = 4860.
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Magma
[1] cat [n le 1 select 2 else (1+n)*Self(Floor(n/2)): n in [1..50]]; // Vincenzo Librandi, Aug 26 2016
-
Maple
f:= proc(n) option remember; (1+n)*procname(floor(n/2)) end proc: f(0):= 1: map(f, [$0..100]); # Robert Israel, Aug 26 2016
-
Mathematica
Table[Product[1 + Floor[2 n/2^k], {k, 2 n}], {n, 0, 42}] (* or *) Table[Function[w, Times @@ Map[1 + FromDigits[PadRight[w, #], 2] &, Range@ Length@ w]]@ IntegerDigits[n, 2], {n, 0, 42}] (* Michael De Vlieger, Aug 26 2016 *)
Formula
Recurrence: a(n)=(1+n)*a(floor(n/2)); a(2n)=(1+2n)*a(n); a(n*2^m) = (Product_{k=1..m} (1 + n*2^k))*a(n).
a(2^m-1) = 2^(m*(m+1)/2), a(2^m) = 2^(m*(m+1)/2)*Product_{k=0..m} (1 + 1/2^k), m>=1.
Asymptotic behavior: a(n) = O(n^((1+log_2(n))/2)); this follows from the inequalities below.
a(n) <= A098844(n)*Product_{k=0..floor(log_2(n))} (1 + 1/2^k).
a(n) >= A098844(n)/Product_{k=1..floor(log_2(n))} (1 - 1/2^k).
a(n) < c*n^((1+log_2(n))/2) = c*2^A000217(log_2(n)), where c = Product_{k>=0} (1 + 1/2^k) = 4.7684620580627... (see constant A081845).
a(n) > n^((1+log_2(n))/2) = 2^A000217(log_2(n)),
lim sup a(n)/A098844(n) = Product_{k>=0} (1 + 1/2^k) = 4.7684620580627..., for n->oo (see constant A081845).
lim inf a(n)/A098844(n) = 1/Product_{k>=1} (1 - 1/2^k) = 1/0.288788095086602421..., for n->oo (see constant A048651).
lim inf a(n)/n^((1+log_2(n))/2) = 1, for n->oo.
lim sup a(n)/n^((1+log_2(n))/2) = Product_{k>=0} (1 + 1/2^k) = 4.7684620580627..., for n->oo (see constant A081845).
lim inf a(n+1)/a(n) = Product_{k>=0} (1 + 1/2^k) = 4.7684620580627... for n->oo (see constant A081845).
G.f. g(x) satisfies g(x) = (1+2x)*g(x^2) + 2*x^2*(1+x)*g'(x^2). - Robert Israel, Aug 26 2016
A132323 Decimal expansion of Product_{k>=0} (1+1/3^k).
3, 1, 2, 9, 8, 6, 8, 0, 3, 7, 1, 3, 4, 0, 2, 3, 0, 7, 5, 8, 7, 7, 6, 9, 8, 2, 1, 3, 4, 5, 7, 6, 7, 0, 8, 3, 3, 1, 3, 8, 8, 5, 1, 8, 3, 9, 7, 9, 0, 0, 7, 0, 0, 1, 8, 9, 9, 3, 4, 4, 2, 0, 5, 9, 8, 4, 6, 0, 4, 2, 2, 1, 4, 5, 1, 6, 1, 9, 3, 5, 3, 3, 8, 7, 8, 0, 7, 3, 2, 0, 7, 3, 5, 4, 5, 9, 2, 7, 7, 6, 3, 0, 5, 2, 0
Offset: 1
Comments
Twice the constant A132324.
Examples
3.12986803713402307587769821345767...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1200
- Richard J. McIntosh, Some Asymptotic Formulae for q-Hypergeometric Series, Journal of the London Mathematical Society, Vol. 51, No. 1 (1995), pp. 120-136; alternative link.
Crossrefs
Programs
-
Mathematica
digits = 105; NProduct[1+1/3^k, {k, 0, Infinity}, NProductFactors -> 100, WorkingPrecision -> digits+3] // N[#, digits+3]& // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 18 2014 *) 2*N[QPochhammer[-1/3,1/3]] (* G. C. Greubel, Dec 01 2015 *)
-
PARI
prodinf(x=0, 1+(1/3)^x) \\ Altug Alkan, Dec 03 2015
Formula
Equals lim sup_{n->oo} Product_{0<=k<=floor(log_3(n))} (1+1/floor(n/3^k)).
Equals lim sup_{n->oo} A132327(n)/n^((1+log_3(n))/2).
Equals lim sup_{n->oo} A132328(n)/n^((log_3(n)-1)/2).
Equals 2*exp(Sum_{n>0} 3^(-n) * Sum{k|n} -(-1)^k/k) = 2*exp(Sum_{n>0} A000593(n)/(n*3^n)).
Equals 2*(-1/3; 1/3){infinity}, where (a;q){infinity} is the q-Pochhammer symbol. - G. C. Greubel, Dec 01 2015
Equals sqrt(2) * exp(log(3)/24 + Pi^2/(12*log(3))) * Product_{k>=1} (1 - exp(-2*(2*k-1)*Pi^2/log(3))) (McIntosh, 1995). - Amiram Eldar, May 25 2023
A132327 a(n) = Product{k>=0} (1 + floor(n/3^k)).
1, 2, 3, 8, 10, 12, 21, 24, 27, 80, 88, 96, 130, 140, 150, 192, 204, 216, 399, 420, 441, 528, 552, 576, 675, 702, 729, 2240, 2320, 2400, 2728, 2816, 2904, 3264, 3360, 3456, 4810, 4940, 5070, 5600, 5740, 5880, 6450, 6600, 6750, 8832, 9024, 9216, 9996, 10200
Offset: 0
Comments
If n is written in base-3 as n=d(m)d(m-1)d(m-2)...d(2)d(1)d(0) (where d(k) is the digit at position k) then a(n) is also the product (1+d(m)d(m-1)d(m-2)...d(2)d(1)d(0))*(1+d(m)d(m-1)d(m-2)...d(2)d(1))*(1+d(m)d(m-1)d(m-2)...d(2))*...*(1+d(m)d(m-1)d(m-2))*(1+d(m)d(m-1))*(1+d(m)).
Examples
a(12)=(1+floor(12/3^0))*(1+floor(12/3^1))*(1+floor(12/3^2))=13*5*2=130; a(20)=441 since 20=202(base-3) and so a(20)=(1+202)*(1+20)*(1+2)(base-3)=21*7*3=441.
Crossrefs
Programs
-
Mathematica
Table[Product[1+Floor[n/3^k],{k,0,n}],{n,0,49}] (* James C. McMahon, Mar 07 2025 *)
Formula
Recurrence: a(n)=(1+n)*a(floor(n/3)); a(3n)=(1+3n)*a(n); a(n*3^m)=product{1<=k<=m, 1+n*3^k}*a(n).
a(k*3^m-j)=(k*3^m-j+1)*3^m*p^(m(m-1)/2), for 0=1, a(3^m)=3^(m(m+1)/2)*product{0<=k<=m, 1+1/3^k}, m>=1.
Asymptotic behavior: a(n)=O(n^((1+log_3(n))/2)); this follows from the inequalities below.
a(n)<=A132027(n)*product{0<=k<=floor(log_3(n)), 1+1/3^k}.
a(n)>=A132027(n)/product{1<=k<=floor(log_3(n)), 1-1/3^k}.
a(n)A000217(log_3(n)), where c=product{k>=0, 1+1/p^k}=3.12986803713402307587769821345767... (see constant A132323).
a(n)>n^((1+log_3(n))/2)=3^A000217(log_3(n)).
lim sup a(n)/A132027(n)=2*product{k>0, 1+1/3^k}=3.12986803713402307587769821345767..., for n-->oo (see constant A132323).
lim inf a(n)/A132027(n)=1/product{k>0, 1-1/3^k}=1/0.560126077927948944969792243314140014..., for n-->oo (see constant A100220).
lim inf a(n)/n^((1+log_3(n))/2)=1, for n-->oo.
lim sup a(n)/n^((1+log_3(n))/2)=2*product{k>0, 1+1/3^k}=3.12986803713402307587769821345767..., for n-->oo (see constant A132323).
lim inf a(n+1)/a(n)=2*product{k>0, 1+1/3^k}=3.12986803713402307587769821345767... for n-->oo (see constant A132323).
A065039 If n in base 10 is d_1 d_2 ... d_k then a(n) = d_1 + d_1d_2 + d_1d_2d_3 + ... + d_1...d_k.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70
Offset: 0
Comments
a(n) = (D(n) - sod(n))/9, for n >= 1, with sod(n) the sum of digits of n, and with D(n) any of the 10 numbers given in base 10 representation by d_(nod(n)-1) d_(nod(n)-2) ... d_0 b_0, where nod(n) is the number of digits of n = d_(nod(n)-1) d_(nod(n)-2) ... d_0 in base 10, and b_0 from {0, 1, ..., 9}. E.g., D(1234) stands for any number from {12340, 12341, ..., 12349}. This corresponds the well known (and easy to prove) rule that any number after subtraction of its sum of digits is divisible by 9. In this subtraction any of the last digit b_0 leads to the same result. Some mathematical tricks are based on this rule. See the Gardner reference. - Wolfdieter Lang, May 04 2010
Examples
a(1234)=1370 because 1+12+123+1234=1370. With repunits: a(1234) = 4*1 + 3*11 + 2*111 + 1*1111 = 1370. - _Wolfdieter Lang_, May 04 2010
References
- M. Gardner, Mathematische Zaubereien, Dumont, 2004, p. 39. German translation of: Mathematics, Magic and Mystery, Dover, 1956. [From Wolfdieter Lang, May 04 2010]
Links
- Harry J. Smith, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Haskell
import Data.List (inits) a065039 n = sum $ map read $ tail $ inits $ show n -- Reinhard Zumkeller, Mar 31 2011
-
Maple
A065039 := proc(n) local d,m: d:=convert(n,base,10): m:=nops(d): return add(op(convert(d[(m-k+1)..m], base, 10, 10^m)),k=1..m): end: seq(A065039(n),n=0..64); # Nathaniel Johnston, Jun 27 2011
-
Mathematica
a[n_] := Apply[Plus, Table[FromDigits[Take[IntegerDigits[n], k]], {k, 1, Length[IntegerDigits[n]]}]] Table[d = IntegerDigits[n]; rd = 0; While[ Length[d] > 0, rd = rd + FromDigits[d]; d = Drop[d, -1]]; rd, {n, 0, 75} ] f[n_] := Plus @@ NestList[ Quotient[ #, 10] &, n, Max[1, Floor@ Log[10, n]]]; Array[f, 70, 0] (* Robert G. Wilson v, Jun 29 2010 *) Array[Total[Table[FromDigits[Take[IntegerDigits[#],x]],{x, IntegerLength[ #]}]]&,100,0](* Harvey P. Dale, Jan 02 2016 *)
-
PARI
{ for (n=0, 1000, a=0; k=n; until (k==0, a+=k; k\=10); write("b065039.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 04 2009
Formula
a(n) = sum( k>=0, floor(n/10^ k)) = n+A054899(n). - Benoit Cloitre, Aug 03 2002
From Hieronymus Fischer, Aug 14 2007: (Start)
a(10*n)=10*n+a(n); a(n*10^m)=10*n*(10^m-1)/9+a(n).
a(k*10^m)=k*(10^(m+1)-1)/2, 0<=k<10, m>=0.
a(n)=10/9*n+O(log(n)), a(n+1)-a(n)=O(log(n)); this follows from the inequalities below.
a(n)<=(10*n-1)/9; equality holds for powers of 10.
a(n)>=(10*n-9)/9-floor(log_10(n)); equality holds for n=10^m-1, m>0.
lim inf (10*n/9-a(n))=1/9, for n-->oo.
lim sup (10*n/9-log_10(n)-a(n))=0, for n-->oo.
lim sup (a(n+1)-a(n)-log_10(n))=1, for n-->oo.
G.f.: sum{k>=0, x^(10^k)/(1-x^(10^k))}/(1-x).
(End)
a(n) = sum(d_(k)*RU(k+1),k=0..nod(n)-1), with the notation nod(n)and d_k given in a comment above, and RU(k)is the repunit (10^k-1)/9 (k times 1). - Wolfdieter Lang, May 04 2010
A132271 Product{k>=0, 1+floor(n/10^k)}.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 205, 210, 215, 220, 225, 230, 235, 240, 245, 250, 306, 312, 318, 324, 330, 336, 342, 348, 354, 360, 427
Offset: 0
Keywords
Comments
If n is written in base-10 as n=d(m)d(m-1)d(m-2)...d(2)d(1)d(0) (where d(k) is the digit at position k) then a(n) is also the product (1+d(m)d(m-1)d(m-2)...d(2)d(1)d(0))*(1+d(m)d(m-1)d(m-2)...d(2)d(1))*(1+d(m)d(m-1)d(m-2)...d(2))*...*(1+d(m)d(m-1)d(m-2))*(1+d(m)d(m-1))*(1+d(m)).
Examples
a(12)=(1+floor(12/10^0))*(1+floor(12/10^1))=13*2=26; a(21)=63 since 21=21(base-10) and so a(21)=(1+21)*(1+2)(base-10)=22*3=66.
Crossrefs
Programs
-
Mathematica
f[n_] := Block[{k = 0, p = 1}, While[a = Floor[n/10^k]; a > 0, p *= 1 + a; k++]; p]; Array[f, 61, 0] (* Robert G. Wilson v, May 10 2011 *) Table[Product[1+Floor[n/10^k],{k,0,n}],{n,0,60}] (* Harvey P. Dale, May 14 2019 *)
Formula
The following formulas are given for a general parameter p considering the product of terms 1+floor(n/p^k) for 0<=k<=floor(log_p(n)), where p=10 for this sequence.
Recurrence: a(n)=(1+n)*a(floor(n/p)); a(pn)=(1+pn)*a(n); a(n*p^m)=product{1<=k<=m, 1+n*p^k}*a(n).
a(k*p^m-j)=(k*p^m-j+1)*k^m*p^(m(m-1)/2), for 0=1, a(p^m)=p^(m(m+1)/2)*product{0<=k<=m, 1+1/p^k}, m>=1.
Asymptotic behavior: a(n)=O(n^((1+log_p(n))/2)); this follows from the inequalities below.
a(n)<=A067080(n)*product{0<=k<=floor(log_p(n)), 1+1/p^k}.
a(n)>=A067080(n)/product{1<=k<=floor(log_p(n)), 1-1/p^k}.
a(n)A000217(log_p(n)), where c=product{k>=0, 1+1/p^k}=2.2244691382741012... (for p=10 see constant A132325).
a(n)>n^((1+log_p(n))/2)=p^A000217(log_p(n)).
lim sup a(n)/A067080(n)=2*product{k>0, 1+1/p^k}=2.2244691382741012..., for n-->oo (for p=10 see constant A132325).
lim inf a(n)/A067080(n)=1/product{k>0, 1-1/p^k}=1/0.8900100999989990000001000..., for n-->oo (for p=10 see constant A132038).
lim inf a(n)/n^((1+log_p(n))/2)=1, for n-->oo.
lim sup a(n)/n^((1+log_p(n))/2)=2*product{k>0, 1+1/p^k}=2.2244691382741012..., for n-->oo (for p=10 see constant A132325).
lim inf a(n+1)/a(n)=2*product{k>0, 1+1/p^k}=2.2244691382741012... for n-->oo (for p=10 see constant A132325).
A132324 Decimal expansion of Product_{k>=1} (1+1/3^k).
1, 5, 6, 4, 9, 3, 4, 0, 1, 8, 5, 6, 7, 0, 1, 1, 5, 3, 7, 9, 3, 8, 8, 4, 9, 1, 0, 6, 7, 2, 8, 8, 3, 5, 4, 1, 6, 5, 6, 9, 4, 2, 5, 9, 1, 9, 8, 9, 5, 0, 3, 5, 0, 0, 9, 4, 9, 6, 7, 2, 1, 0, 2, 9, 9, 2, 3, 0, 2, 1, 1, 0, 7, 2, 5, 8, 0, 9, 6, 7, 6, 6, 9, 3, 9, 0, 3, 6, 6, 0, 3, 6, 7, 7, 2, 9, 6, 3, 8, 8, 1, 5, 2, 6, 0
Offset: 1
Comments
Half the constant A132323.
Examples
1.56493401856701153793884910...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1200
- Richard J. McIntosh, Some Asymptotic Formulae for q-Hypergeometric Series, Journal of the London Mathematical Society, Vol. 51, No. 1 (1995), pp. 120-136; alternative link.
Crossrefs
Programs
-
Mathematica
digits = 105; NProduct[1+1/3^k, {k, 1, Infinity}, NProductFactors -> 100, WorkingPrecision -> digits+5] // N[#, digits+5]& // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 18 2014 *) N[QPochhammer[-1/3,1/3]] (* G. C. Greubel, Dec 01 2015 *)
Formula
(1/2)*lim sup Product{k=0..floor(log_3(n))} (1+1/floor(n/3^k)) for n-->oo.
(1/2)*lim sup A132327(n)/n^((1+log_3(n))/2) for n-->oo.
(1/2)*lim sup A132328(n)/n^((log_3(n)-1)/2) for n-->oo.
exp(Sum_{n>0} 3^(-n)*Sum_{k|n} -(-1)^k/k) = exp(Sum_{n>0} A000593(n)/(n*3^n)).
Equals (-1/3; 1/3){infinity}, where (a;q){infinity} is the q-Pochhammer symbol. - G. C. Greubel, Dec 01 2015
From Amiram Eldar, Feb 19 2022: (Start)
Equals (sqrt(2)/2) * exp(log(3)/24 + Pi^2/(12*log(3))) * Product_{k>=1} (1 - exp(-2*(2*k-1)*Pi^2/log(3))) (McIntosh, 1995).
Equals Sum_{n>=0} 1/A027871(n). (End)
Comments