A015007 q-factorial numbers for q=8.
1, 1, 9, 657, 384345, 1799118945, 67375205371305, 20185139902805378865, 48378633136349277767794425, 927610024989668734297857360967425, 142287668466497494704440569679875994730825, 174605966461872393482359052970987514818406771638225
Offset: 0
Links
Crossrefs
Programs
-
Magma
[n le 1 select 1 else (8^n-1)*Self(n-1)/7: n in [1..15]]; // Vincenzo Librandi, Oct 26 2012
-
Mathematica
RecurrenceTable[{a[1]==1, a[n]==((8^n - 1) * a[n-1])/7}, a, {n, 15}] (* Vincenzo Librandi, Oct 26 2012 *) Table[QFactorial[n, 8], {n, 15}] (* Bruno Berselli, Aug 14 2013 *)
Formula
a(n) = Product_{k=1..n} ((q^k - 1) / (q - 1)), with q=8.
a(0) = 1, a(n) = (8^n-1)*a(n-1)/7. - Vincenzo Librandi, Oct 26 2012
From Amiram Eldar, Jul 05 2025: (Start)
a(n) = Product_{k=1..n} A023001(k).
a(n) ~ c * 8^(n*(n+1)/2)/7^n, where c = A132036. (End)
Extensions
a(0)=1 prepended by Alois P. Heinz, Sep 08 2021
Comments