A136215
Triangle T, read by rows, where T(n,k) = A007559(n-k)*C(n,k) where A007559 equals the triple factorials in column 0.
Original entry on oeis.org
1, 1, 1, 4, 2, 1, 28, 12, 3, 1, 280, 112, 24, 4, 1, 3640, 1400, 280, 40, 5, 1, 58240, 21840, 4200, 560, 60, 6, 1, 1106560, 407680, 76440, 9800, 980, 84, 7, 1, 24344320, 8852480, 1630720, 203840, 19600, 1568, 112, 8, 1, 608608000, 219098880, 39836160
Offset: 0
Column k of T = column 0 of U^(k+1), while
column k of U = column 0 of T^(3k+1) where U = A136214 and
column k of V = column 0 of T^(3k+2) where V = A112333.
This triangle T begins:
1;
1, 1;
4, 2, 1;
28, 12, 3, 1;
280, 112, 24, 4, 1;
3640, 1400, 280, 40, 5, 1;
58240, 21840, 4200, 560, 60, 6, 1;
1106560, 407680, 76440, 9800, 980, 84, 7, 1; ...
Triangle U = A136214 begins:
1;
1, 1;
4, 4, 1;
28, 28, 7, 1;
280, 280, 70, 10, 1;
3640, 3640, 910, 130, 13, 1; ...
with triple factorials A007559 in column 0.
Triangle V = A112333 begins:
1;
2, 1;
10, 5, 1;
80, 40, 8, 1;
880, 440, 88, 11, 1;
12320, 6160, 1232, 154, 14, 1; ...
with triple factorials A008544 in column 0.
-
T[n_, k_]:= Binomial[n, k]*If[n - k == 0, 1, Product[3*j + 1, {j, 0, n - k - 1}]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Jun 10 2018 *)
-
T(n,k)=binomial(n,k)*if(n-k==0,1,prod(j=0,n-k-1,3*j+1))
A324224
Total number T(n,k) of 1's in falling diagonals with index k in all n X n permutation matrices divided by |k|!; triangle T(n,k), n>=1, 1-n<=k<=n-1, read by rows.
Original entry on oeis.org
1, 1, 2, 1, 1, 4, 6, 4, 1, 1, 6, 18, 24, 18, 6, 1, 1, 8, 36, 96, 120, 96, 36, 8, 1, 1, 10, 60, 240, 600, 720, 600, 240, 60, 10, 1, 1, 12, 90, 480, 1800, 4320, 5040, 4320, 1800, 480, 90, 12, 1, 1, 14, 126, 840, 4200, 15120, 35280, 40320, 35280, 15120, 4200, 840, 126, 14, 1
Offset: 1
Triangle T(n,k) begins:
: 1 ;
: 1, 2, 1 ;
: 1, 4, 6, 4, 1 ;
: 1, 6, 18, 24, 18, 6, 1 ;
: 1, 8, 36, 96, 120, 96, 36, 8, 1 ;
: 1, 10, 60, 240, 600, 720, 600, 240, 60, 10, 1 ;
: 1, 12, 90, 480, 1800, 4320, 5040, 4320, 1800, 480, 90, 12, 1 ;
-
b:= proc(s, c) option remember; (n-> `if`(n=0, c,
add(b(s minus {i}, c+x^(n-i)), i=s)))(nops(s))
end:
T:= n-> (p-> seq(coeff(p, x, i)/abs(i)!, i=1-n..n-1))(b({$1..n}, 0)):
seq(T(n), n=1..8);
# second Maple program:
egf:= k-> (t-> x^t/t!*hypergeom([2, t], [t+1], x))(abs(k)+1):
T:= (n, k)-> n! * coeff(series(egf(k), x, n+1), x, n):
seq(seq(T(n, k), k=1-n..n-1), n=1..8);
# third Maple program:
T:= (n, k)-> (t-> `if`(t
-
T[n_, k_] := With[{t = Abs[k]}, If[tJean-François Alcover, Mar 25 2021, after 3rd Maple program *)
A121757
Triangle read by rows: multiply Pascal's triangle by 1,2,6,24,120,720,... = A000142.
Original entry on oeis.org
1, 1, 2, 1, 4, 6, 1, 6, 18, 24, 1, 8, 36, 96, 120, 1, 10, 60, 240, 600, 720, 1, 12, 90, 480, 1800, 4320, 5040, 1, 14, 126, 840, 4200, 15120, 35280, 40320, 1, 16, 168, 1344, 8400, 40320, 141120, 322560, 362880, 1, 18, 216, 2016, 15120, 90720, 423360, 1451520
Offset: 0
Row 6 is 1*1 5*2 10*6 10*24 5*120 1*720.
From _Vincenzo Librandi_, Dec 16 2012: (Start)
Triangle begins:
1,
1, 2,
1, 4, 6,
1, 6, 18, 24,
1, 8, 36, 96, 120,
1, 10, 60, 240, 600, 720,
1, 12, 90, 480, 1800, 4320, 5040,
1, 14, 126, 840, 4200, 15120, 35280, 40320,
1, 16, 168, 1344, 8400, 40320, 141120, 322560, 362880 etc.
(End)
-
a121757 n k = a121757_tabl !! n !! k
a121757_row n = a121757_tabl !! n
a121757_tabl = iterate
(\xs -> zipWith (+) (xs ++ [0]) (zipWith (*) [1..] ([0] ++ xs))) [1]
-- Reinhard Zumkeller, Mar 06 2014
-
Flatten[Table[n!(k+1)/(n-k)!,{n,0,10},{k,0,n}]] (* Harvey P. Dale, Apr 25 2011 *)
-
A000142(n)={ return(n!) ; } A007318(n,k)={ return(binomial(n,k)) ; } A121757(n,k)={ return(A007318(n,k)*A000142(k+1)) ; } { for(n=0,12, for(k=0,n, print1(A121757(n,k),",") ; ); ) ; } \\ R. J. Mathar, Sep 02 2006
A176861
Triangle T(n, k) = (-1)^n*(k+1)!*(n-k+1)!*binomial(n+2, k+2)*binomial(n+2, n-k+2) read by rows.
Original entry on oeis.org
1, -6, -6, 36, 64, 36, -240, -600, -600, -240, 1800, 5760, 8100, 5760, 1800, -15120, -58800, -105840, -105840, -58800, -15120, 141120, 645120, 1411200, 1806336, 1411200, 645120, 141120, -1451520, -7620480, -19595520, -30481920, -30481920, -19595520, -7620480, -1451520
Offset: 0
Triangle begins as:
1;
-6, -6;
36, 64, 36;
-240, -600, -600, -240;
1800, 5760, 8100, 5760, 1800;
-15120, -58800, -105840, -105840, -58800, -15120;
141120, 645120, 1411200, 1806336, 1411200, 645120, 141120;
- F. S. Roberts, Applied Combinatorics, Prentice-Hall, 1984, p. 576 and 270.
-
[(-1)^n*Factorial(k+1)*Factorial(n-k+1)*Binomial(n+2, k+2)*Binomial(n+2, n-k+2): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 07 2021
-
T[n_, k_]:= (-1)^n*(k+1)!*(n-k+1)!*Binomial[n+2, k+2]*Binomial[n+2, n-k+2];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten
-
flatten([[(-1)^n*factorial(k+1)*factorial(n-k+1)*binomial(n+2, k+2)*binomial(n+2, n-k+2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 07 2021
A176862
A symmetrical triangle sequence:t(n,m)=(-1)^m*(n - m)!*Binomial[n - 1, m] + (-1)^(n - m + 1)*(n - (n - m + 1))!*Binomial[n - 1, n - m + 1].
Original entry on oeis.org
2, 5, 5, 37, -16, 37, 239, -50, -50, 239, 1801, -492, 180, -492, 1801, 15119, -4186, 714, 714, -4186, 15119, 141121, -40336, 8568, -2688, 8568, -40336, 141121, 1451519, -423342, 90504, -13104, -13104, 90504, -423342, 1451519
Offset: 3
{2},
{5, 5},
{37, -16, 37},
{239, -50, -50, 239},
{1801, -492, 180, -492, 1801},
{15119, -4186, 714, 714, -4186, 15119},
{141121, -40336, 8568, -2688, 8568, -40336, 141121},
{1451519, -423342, 90504, -13104, -13104, 90504, -423342, 1451519}
- F. S. Roberts, Applied Combinatorics, Prentice-Hall, 1984, p. 576 and 270.
-
t[n_, m_] := (-1)^m*(n - m)!*Binomial[n - 1, m] + (-1)^(n - m + 1)*(n - (n - m + 1))!*Binomial[n - 1, n - m + 1];
Table[Table[t[n, m], {m, 2, n - 1}], {n, 3, 10}];
Flatten[%]
Comments