cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 287 results. Next

A182713 Number of 3's in the last section of the set of partitions of n.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 2, 3, 6, 6, 10, 14, 18, 24, 35, 42, 58, 76, 97, 124, 164, 202, 261, 329, 412, 514, 649, 795, 992, 1223, 1503, 1839, 2262, 2741, 3346, 4056, 4908, 5919, 7150, 8568, 10297, 12320, 14721, 17542, 20911, 24808, 29456, 34870, 41232, 48652, 57389
Offset: 1

Views

Author

Omar E. Pol, Nov 28 2010

Keywords

Comments

Also number of 3's in all partitions of n that do not contain 1 as a part.
Also 0 together with the first differences of A024787. - Omar E. Pol, Nov 13 2011
a(n) is the number of partitions of n having fewer 1s than 2s; e.g., a(7) counts these 3 partitions: [5, 2], [3, 2, 2], [2, 2, 2, 1]. - Clark Kimberling, Mar 31 2014
The last section of the set of partitions of n is also the n-th section of the set of partitions of any integer >= n. - Omar E. Pol, Apr 07 2014

Examples

			a(7) = 2 counts the 3's in 7 = 4+3 = 3+2+2. The 3's in 7 = 3+3+1 = 3+2+1+1 = 3+1+1+1+1 do not count.
From _Omar E. Pol_, Oct 27 2012: (Start)
--------------------------------------
Last section                   Number
of the set of                    of
partitions of 7                 3's
--------------------------------------
7 .............................. 0
4 + 3 .......................... 1
5 + 2 .......................... 0
3 + 2 + 2 ...................... 1
.   1 .......................... 0
.       1 ...................... 0
.       1 ...................... 0
.           1 .................. 0
.       1 ...................... 0
.           1 .................. 0
.           1 .................. 0
.               1 .............. 0
.               1 .............. 0
.                   1 .......... 0
.                       1 ...... 0
------------------------------------
.       5 - 3 =                  2
.
In the last section of the set of partitions of 7 the difference between the sum of the third column and the sum of the fourth column is 5 - 3 = 2 equaling the number of 3's, so a(7) = 2 (see also A024787).
(End)
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; local g, h;
          if n=0 then [1, 0]
        elif i<2 then [0, 0]
        else g:= b(n, i-1); h:= `if`(i>n, [0, 0], b(n-i, i));
             [g[1]+h[1], g[2]+h[2]+`if`(i=3, h[1], 0)]
          fi
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=1..70);  # Alois P. Heinz, Mar 18 2012
  • Mathematica
    z = 60; f[n_] := f[n] = IntegerPartitions[n]; t1 = Table[Count[f[n], p_ /; Count[p, 1] < Count[p, 2]], {n, 0, z}] (* Clark Kimberling, Mar 31 2014 *)
    b[n_, i_] := b[n, i] = Module[{g, h}, If[n == 0, {1, 0}, If[i<2, {0, 0}, g = b[n, i-1]; h = If[i>n, {0, 0}, b[n-i, i]]; Join[g[[1]] + h[[1]], g[[2]] + h[[2]] + If[i == 3, h[[1]], 0]]]]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 1, 70}] (* Jean-François Alcover, Nov 30 2015, after Alois P. Heinz *)
    Table[Count[Flatten@Cases[IntegerPartitions[n], x_ /; Last[x] != 1], 3], {n, 51}] (* Robert Price, May 15 2020 *)
  • Sage
    A182713 = lambda n: sum(list(p).count(3) for p in Partitions(n) if 1 not in p) # D. S. McNeil, Nov 29 2010

Formula

It appears that A000041(n) = a(n+1) + a(n+2) + a(n+3), n >= 0. - Omar E. Pol, Feb 04 2012
a(n) ~ A000041(n)/3 ~ exp(Pi*sqrt(2*n/3)) / (12*sqrt(3)*n). - Vaclav Kotesovec, Jan 03 2019

A182994 Sum of all parts of the n-th subshell of the head of the last section of the set of partitions of any even integer >= 2n.

Original entry on oeis.org

2, 6, 16, 32, 64, 132, 224, 404, 704, 1156, 1880, 3060, 4748, 7396, 11346, 17054, 25454, 37706, 54980, 79756, 114702, 163394, 231288, 325408, 454138, 630542, 870504, 1194536, 1631196, 2216992, 2997542, 4036022, 5411108, 7223636
Offset: 1

Views

Author

Omar E. Pol, Feb 06 2011

Keywords

Comments

The last section of the set of partitions of 2n contains n subshells.
Also first differences of A182736. - Omar E. Pol, Mar 03 2011

Examples

			a(5)=64 because the 5th subshell of the head of the last section of any even integer >= 10 looks like this:
(10 . . . . . . . . . )
( 5 . . . . 5 . . . . )
( 6 . . . . . 4 . . . )
( 7 . . . . . . 3 . . )
( 4 . . . 3 . . 3 . . )
.                (2 . )
.                (2 . )
.                (2 . )
.                (2 . )
.                (2 . )
.                (2 . )
.                (2 . )
There are 17 parts whose sum is 10+5+5+6+4+7+3+4+3+3+2+2+2+2+2+2+2 = 10*5 + 2*7 = 64, so a(5)=64.
		

Crossrefs

Formula

a(1) = 2. a(n) = A138880(2n) - A138880(2n-2), n >= 2.

Extensions

More terms from Omar E. Pol, Mar 03 2011

A182995 Sum of parts of the n-th subsection of the head of the last section of the set of partitions of any odd integer >= 2n+1.

Original entry on oeis.org

3, 7, 18, 44, 82, 158, 303, 507, 873, 1470, 2354, 3756, 5923, 9065, 13815, 20824, 30853, 45365, 66210, 95415, 136696, 194414, 274057, 384136, 535219, 740559, 1019529, 1396212, 1901533, 2577918, 3479291, 4673711, 6253003, 8332767
Offset: 1

Views

Author

Omar E. Pol, Feb 06 2011

Keywords

Comments

The last section of the set of partitions of 2n+1 contains n subsections.
Also first differences of A182737. - Omar E. Pol, Mar 03 2011

Examples

			a(5)=82 because the 5th subsection of the head of the last section of any odd integer >= 11 looks like this:
(11 . . . . . . . . . . )
( 6 . . . . . 5 . . . . )
( 7 . . . . . . 4 . . . )
( 8 . . . . . . . 3 . . )
( 4 . . . 4 . . . 3 . . )
( 5 . . . . 3 . . 3 . . )
.                  (2 . )
.                  (2 . )
.                  (2 . )
.                  (2 . )
.                  (2 . )
.                  (2 . )
.                  (2 . )
.                  (2 . )
There are 21 parts whose sum is 11+6+5+7+4+8+3+4+4+3+5+3+3+2+2+2+2+2+2+2+2 = 11*6 + 2*8 = 82, so a(5) = 82.
		

Crossrefs

Formula

a(n) = A138880(2n+1) - A138880(2n-1).

Extensions

a(17) corrected and more terms from Omar E. Pol, Mar 03 2011.
a(12) corrected by Georg Fischer, Aug 31 2020

A193827 Irregular triangle read by rows in which row n lists the emergent parts of all partitions of n, or 0 if such parts do not exist.

Original entry on oeis.org

0, 0, 0, 0, 2, 3, 2, 2, 4, 3, 3, 2, 5, 4, 2, 2, 4, 3, 2, 2, 3, 6, 5, 4, 3, 2, 5, 4, 2, 2, 3, 7, 3, 3, 6, 5, 2, 2, 4, 3, 2, 2, 3, 6, 5, 4, 2, 2, 2, 2, 3, 4, 8, 4, 3, 7, 6, 5, 3, 2, 5, 4, 2, 2, 3, 7, 3, 3, 6, 5, 2, 2, 2, 2, 3, 3, 4, 9, 5, 4, 3, 4, 8, 7, 6
Offset: 0

Views

Author

Omar E. Pol, Aug 12 2011

Keywords

Comments

For the definition of "emergent part" see A182699 and also A182709. Also [0, 0, 0, 0] followed by the positive integers of the rows that contain zeros in the triangle A186114. For another version see A183152.

Examples

			If written as a triangle:
0,
0,
0,
0,
2,
3,
2,2,4,3,
3,2,5,4,
2,2,4,3,2,2,3,6,5,4,
3,2,5,4,2,2,3,7,3,3,6,5,
2,2,4,3,2,2,3,6,5,4,2,2,2,2,3,4,8,4,3,7,6,5,
3,2,5,4,2,2,3,7,3,3,6,5,2,2,2,2,3,3,4,9,5,4,3,4,8,7,6
		

Crossrefs

Row n has length A182699(n). Row sums give A182709.

A194714 Sum of all odd-indexed parts minus the sum of all even-indexed parts of all partitions of n, with the parts written in nondecreasing order.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 9, 14, 18, 26, 32, 48, 57, 82, 102, 138, 169, 230, 278, 370, 450, 584, 709, 914, 1102, 1400, 1692, 2124, 2555, 3186, 3818, 4720, 5649, 6926, 8269, 10078, 11989, 14526, 17249, 20782, 24603, 29508, 34843, 41600, 49008, 58258, 68468, 81098
Offset: 1

Views

Author

Omar E. Pol, Feb 12 2012

Keywords

Comments

It appears that A066897 is also another version of this sequence but with the parts written in nonincreasing order.

Examples

			a(6) = 37 - 29 = 8 because the partitions of 6 written in nondecreasing order are
.
.   6                        =  6
.   3  - 3                   =  0
.   2  - 4                   = -2
.   2  - 2  + 2              =  2
.   1  - 5                   = -4
.   1  - 2  + 3              =  2
.   1  - 1  + 4              =  4
.   1  - 1  + 2 - 2          =  0
.   1  - 1  + 1 - 3          = -2
.   1  - 1  + 1 - 1 + 2      =  2
.   1  - 1  + 1 - 1 + 1 - 1  =  0
----------------------------------
.  20 - 21 + 14 - 7 + 3 - 1  =  8
		

Crossrefs

Extensions

More terms from Alois P. Heinz, Feb 12 2012

A207034 Sum of all parts minus the number of parts of the n-th partition in the list of colexicographically ordered partitions of j, if 1<=n<=A000041(j).

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 4, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, 5, 6, 6, 7, 7, 7, 8, 7, 8, 8, 8, 9, 6, 7, 7, 8, 7, 8, 8, 9, 8, 8, 9, 9, 9, 10, 6, 7, 7, 8, 8, 8, 9, 8, 9, 9, 9, 10, 8, 9, 9, 10, 9, 10, 10, 10, 11, 7, 8, 8, 9, 8, 9
Offset: 1

Views

Author

Omar E. Pol, Feb 20 2012

Keywords

Comments

a(n) is also the column number in which is located the part of size 1 in the n-th zone of the tail of the last section of the set of partitions of k in colexicographic order, minus the column number in which is located the part of size 1 in the first row of the same tail, when k -> infinity (see example). For the definition of "section" see A135010.

Examples

			Illustration of initial terms, n = 1..15. Consider the last 15 rows of the tail of the last section of the set of partitions in colexicographic order of any integer >= 8. The tail contains at least A000041(8-1) = 15 parts of size 1. a(n) is also the number of dots in the n-th row of the diagram.
----------------------------------
n      Tail                  a(n)
----------------------------------
15        1 . . . . . .       6
14          1 . . . . .       5
13          1 . . . . .       5
12            1 . . . .       4
11          1 . . . . .       5
10            1 . . . .       4
9             1 . . . .       4
8               1 . . .       3
7             1 . . . .       4
6               1 . . .       3
5               1 . . .       3
4                 1 . .       2
3                 1 . .       2
2                   1 .       1
1                     1       0
----------------------------------
Written as a triangle:
0;
1;
2;
2,3;
3,4;
3,4,4,5;
4,5,5,6;
4,5,5,6,6,6,7;
5,6,6,7,6,7,7,8;
5,6,6,7,7,7,8,7,8,8,8,9;
6,7,7,8,7,8,8,9,8,8,9,9,9,10;
6,7,7,8,8,8,9,8,9,9,9,10,8,9,9,10,9,10,10,10,11;
...
Consider a matrix [j X A000041(j)] in which the rows represent the partitions of j in colexicographic order (see A211992). Every part of every partition is located in a cell of the matrix. We can see that a(n) is the number of empty cells in row n for any integer j, if A000041(j) >= n. The number of empty cells in row n equals the sum of all parts minus the number of parts in the n-th partition of j.
Illustration of initial terms. The smallest part of every partition is located in the last column of the matrix.
---------------------------------------------------------
.   j: 1    2       3         4           5             6
n a(n)
---------------------------------------------------------
1  0 | 1  1 1   1 1 1   1 1 1 1   1 1 1 1 1   1 1 1 1 1 1
2  1 |    . 2   . 2 1   . 2 1 1   . 2 1 1 1   . 2 1 1 1 1
3  2 |          . . 3   . . 3 1   . . 3 1 1   . . 3 1 1 1
4  2 |                  . . 2 2   . . 2 2 1   . . 2 2 1 1
5  3 |                  . . . 4   . . . 4 1   . . . 4 1 1
6  3 |                            . . . 3 2   . . . 3 2 1
7  4 |                            . . . . 5   . . . . 5 1
8  3 |                                        . . . 2 2 2
9  4 |                                        . . . . 4 2
10 4 |                                        . . . . 3 3
11 5 |                                        . . . . . 6
...
Illustration of initial terms. In this case the largest part of every partition is located in the first column of the matrix.
---------------------------------------------------------
.   j: 1    2       3         4           5             6
n a(n)
---------------------------------------------------------
1  0 | 1  1 1   1 1 1   1 1 1 1   1 1 1 1 1   1 1 1 1 1 1
2  1 |    2 .   2 1 .   2 1 1 .   2 1 1 1 .   2 1 1 1 1 .
3  2 |          3 . .   3 1 . .   3 1 1 . .   3 1 1 1 . .
4  2 |                  2 2 . .   2 2 1 . .   2 2 1 1 . .
5  3 |                  4 . . .   4 1 . . .   4 1 1 . . .
6  3 |                            3 2 . . .   3 2 1 . . .
7  4 |                            5 . . . .   5 1 . . . .
8  3 |                                        2 2 2 . . .
9  4 |                                        4 2 . . . .
10 4 |                                        3 3 . . . .
11 5 |                                        6 . . . . .
...
		

Crossrefs

Row r has length A187219(r). Partial sums give A207038. Row sums give A207035. Right border gives A001477. Where records occur give A000041 without repetitions.

Formula

a(n) = t(n) - A194548(n), if n >= 2, where t(n) is the n-th element of the following sequence: triangle read by rows in which row n lists n repeated k times, where k = A187219(n).
a(n) = A000120(A194602(n-1)) = A000120(A228354(n)-1).
a(n) = i - A193173(i,n), i >= 1, 1<=n<=A000041(i).

A210979 Total area of the shadows of the three views of the version "Tree" of the shell model of partitions with n shells.

Original entry on oeis.org

0, 3, 8, 15, 27, 42, 69, 102, 155, 225, 327, 458, 652, 894, 1232, 1669, 2257, 2999, 3996, 5242, 6877, 8928, 11564, 14845, 19045, 24223, 30756, 38815, 48877, 61195, 76496, 95124, 118067, 145930, 179991, 221160, 271268, 331538, 404463, 491948, 597253
Offset: 0

Views

Author

Omar E. Pol, Apr 28 2012

Keywords

Comments

The physical model shows each part of a partition as an object, for example; a cube of side 1 which is labeled with the size of the part. Note that on the branches of the tree each column contains parts of the same size, as a periodic structure. For the large version of this model see A210980.

Examples

			For n = 7 the three views of the shell model of partitions version "tree" with seven shells looks like this:
.
.         A194805(7) = 25        A006128(7) = 54
.
.                        7       7
.                      4         4 3
.                    5           5 2
.                  3             3 2 2
.        6       1               6 1
.          3     1               3 3 1
.            4   1               4 2 1
.              2 1               2 2 2 1
.                1   5           5 1 1
.                1 3             3 2 1 1
.            4   1               4 1 1 1
.              2 1               2 2 1 1 1
.                1 3             3 1 1 1 1
.              2 1               2 1 1 1 1 1
.                1               1 1 1 1 1 1 1
-------------------------------------------------
.
.        6 3 4 2 1 3 5 4 7
.          3 2 2 1 2 2 3
.              2 1 2
.                1
.                1
.                1
.                1
.
.         A194803(7) = 23
.
The areas of the shadows of the three views are A006128(7) = 54, A194803(7) = 23 and A194805(7) = 25, therefore the total area of the three shadows is 54+23+25 = 102, so a(7) = 102.
		

Crossrefs

Formula

a(n) = A006128(n) + A194803(n) + A194805(n).

A220482 Triangle read by rows: T(j,k) in which row j lists the parts in nondecreasing order of the j-th region of the set of partitions of n, with 1<=j<=A000041(n).

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 2, 4, 3, 1, 1, 1, 1, 1, 2, 5, 2, 2, 4, 3, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 6, 3, 2, 5, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 7, 2, 2, 4, 3, 2, 2, 3, 6, 5, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 8
Offset: 1

Views

Author

Omar E. Pol, Jan 27 2013

Keywords

Comments

For the definition of "region" of the set of partitions of n see A206437.

Examples

			First 15 rows of the irregular triangle are
1;
1, 2;
1, 1, 3;
2;
1, 1, 1, 2, 4;
3;
1, 1, 1, 1, 1, 2, 5;
2;
2, 4;
3;
1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 6;
3;
2, 5;
4;
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 7;
		

Crossrefs

Positive terms of A186114. Mirror of A206437.
Row j has length A194446(j). Row sums give A186412.

A228350 Triangle read by rows: T(j,k) is the k-th part in nonincreasing order of the j-th region of the set of compositions (ordered partitions) of n in colexicographic order, if 1<=j<=2^(n-1) and 1<=k<=A006519(j).

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 4, 3, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 5, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 4, 3, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 6, 5, 4, 4, 3, 3
Offset: 1

Views

Author

Omar E. Pol, Aug 20 2013

Keywords

Comments

Triangle read by rows in which row n lists the A006519(n) elements of the row A001511(n) of triangle A065120, n >= 1.
The equivalent sequence for integer partitions is A206437.

Examples

			---------------------------------------------------------
.              Diagram                Triangle
Compositions     of            of compositions (rows)
.   of 5       regions          and regions (columns)
----------------------------------------------------------
.             _ _ _ _ _
.         5  |_        |                                5
.       1+4  |_|_      |                              1 4
.       2+3  |_  |     |                            2   3
.     1+1+3  |_|_|_    |                          1 1   3
.       3+2  |_    |   |                        3       2
.     1+2+2  |_|_  |   |                      1 2       2
.     2+1+2  |_  | |   |                    2   1       2
.   1+1+1+2  |_|_|_|_  |                  1 1   1       2
.       4+1  |_      | |                4               1
.     1+3+1  |_|_    | |              1 3               1
.     2+2+1  |_  |   | |            2   2               1
.   1+1+2+1  |_|_|_  | |          1 1   2               1
.     3+1+1  |_    | | |        3       1               1
.   1+2+1+1  |_|_  | | |      1 2       1               1
.   2+1+1+1  |_  | | | |    2   1       1               1
. 1+1+1+1+1  |_|_|_|_|_|  1 1   1       1               1
.
Also the structure could be represented by an isosceles triangle in which the n-th diagonal gives the n-th region. For the composition of 4 see below:
.             _ _ _ _
.         4  |_      |                  4
.       1+3  |_|_    |                1   3
.       2+2  |_  |   |              2       2
.     1+1+2  |_|_|_  |            1   1       2
.       3+1  |_    | |          3               1
.     1+2+1  |_|_  | |        1   2               1
.     2+1+1  |_  | | |      2       1               1
.   1+1+1+1  |_|_|_|_|    1   1       1               1
.
Illustration of the four sections of the set of compositions of 4:
.                                      _ _ _ _
.                                     |_      |     4
.                                     |_|_    |   1+3
.                                     |_  |   |   2+2
.                       _ _ _         |_|_|_  | 1+1+2
.                      |_    |   3          | |     1
.             _ _      |_|_  | 1+2          | |     1
.     _      |_  | 2       | |   1          | |     1
.    |_| 1     |_| 1       |_|   1          |_|     1
.
.
Illustration of initial terms. The parts of the eight regions of the set of compositions of 4:
--------------------------------------------------------
\j:  1      2    3        4     5      6    7          8
k
--------------------------------------------------------
.  _    _ _    _    _ _ _     _    _ _    _    _ _ _ _
1 |_|1 |_  |2 |_|1 |_    |3  |_|1 |_  |2 |_|1 |_      |4
2        |_|1        |_  |2         |_|1        |_    |3
3                      | |1                       |   |2
4                      |_|1                       |_  |2
5                                                   | |1
6                                                   | |1
7                                                   | |1
8                                                   |_|1
.
Triangle begins:
1;
2,1;
1;
3,2,1,1;
1;
2,1;
1;
4,3,2,2,1,1,1,1;
1;
2,1;
1;
3,2,1,1;
1;
2,1;
1;
5,4,3,3,2,2,2,2,1,1,1,1,1,1,1,1;
...
.
Also triangle read by rows T(n,m) in which row n lists the parts of the n-th section of the set of compositions of the integers >= n, ordered by regions. Row lengths give A045623. Row sums give A001792 (see below):
[1];
[2,1];
[1],[3,2,1,1];
[1],[2,1],[1],[4,3,2,2,1,1,1,1];
[1],[2,1],[1],[3,2,1,1],[1],[2,1],[1],[5,4,3,3,2,2,2,2,1,1,1,1,1,1,1,1];
		

Crossrefs

Formula

T(j,k) = A065120(A001511(j)),k) = A001511(j) - A029837(k), 1<=k<=A006519(j), j>=1.

A340011 Irregular triangle read by rows T(n,k) in which row n lists n blocks, where the m-th block consists of the j-th row of triangle A127093 but with every term multiplied by A000041(m-1), where j = n - m + 1 and 1 <= m <= n.

Original entry on oeis.org

1, 1, 2, 1, 1, 0, 3, 1, 2, 2, 1, 2, 0, 4, 1, 0, 3, 2, 4, 3, 1, 0, 0, 0, 5, 1, 2, 0, 4, 2, 0, 6, 3, 6, 5, 1, 2, 3, 0, 0, 6, 1, 0, 0, 0, 5, 2, 4, 0, 8, 3, 0, 9, 5, 10, 7, 1, 0, 0, 0, 0, 0, 7, 1, 2, 3, 0, 0, 6, 2, 0, 0, 0, 10, 3, 6, 0, 12, 5, 0, 15, 7, 14, 11, 1, 2, 0, 4, 0, 0, 0, 8
Offset: 1

Views

Author

Omar E. Pol, Dec 26 2020

Keywords

Comments

This triangle is a condensed version of the more irregular triangle A340031.
For further information about the correspondence divisor/part see A338156.

Examples

			Triangle begins:
[1];
[1, 2],          [1];
[1, 0, 3],       [1, 2],       [2];
[1, 2, 0, 4],    [1, 0, 3],    [2, 4],    [3];
[1, 0, 0, 0, 5], [1, 2, 0, 4], [2, 0, 6], [3, 6], [5];
[...
Row sums give A066186.
Written as an irregular tetrahedron the first five slices are:
--
1;
-----
1, 2,
1;
--------
1, 0, 3,
1, 2,
2;
-----------
1, 2, 0, 4,
1, 0, 3,
2, 4,
3;
--------------
1, 0, 0, 0, 5,
1, 2, 0, 4,
2, 0, 6,
3, 6,
5;
--------------
Row sums give A339106.
The following table formed by four zones shows the correspondence between divisor and parts (n = 1..5):
.
|---|---------|-----|-------|---------|-----------|-------------|
| n |         |  1  |   2   |    3    |     4     |      5      |
|---|---------|-----|-------|---------|-----------|-------------|
| P |         |     |       |         |           |             |
| A |         |     |       |         |           |             |
| R |         |     |       |         |           |             |
| T |         |     |       |         |           |  5          |
| I |         |     |       |         |           |  3 2        |
| T |         |     |       |         |  4        |  4 1        |
| I |         |     |       |         |  2 2      |  2 2 1      |
| O |         |     |       |  3      |  3 1      |  3 1 1      |
| N |         |     |  2    |  2 1    |  2 1 1    |  2 1 1 1    |
| S |         |  1  |  1 1  |  1 1 1  |  1 1 1 1  |  1 1 1 1 1  |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
|   | A181187 |  1  |  3 1  |  6 2 1  | 12 5 2 1  | 20 8 4 2 1  |
| L |         |  |  |  |/|  |  |/|/|  |  |/|/|/|  |  |/|/|/|/|  |
| I | A066633 |  1  |  2 1  |  4 1 1  |  7 3 1 1  | 12 4 2 1 1  |
| N |         |  *  |  * *  |  * * *  |  * * * *  |  * * * * *  |
| K | A002260 |  1  |  1 2  |  1 2 3  |  1 2 3 4  |  1 2 3 4 5  |
|   |         |  =  |  = =  |  = = =  |  = = = =  |  = = = = =  |
|   | A138785 |  1  |  2 2  |  4 2 3  |  7 6 3 4  | 12 8 6 4 5  |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
|   | A127093 |  1  |  1 2  |  1 0 3  |  1 2 0 4  |  1 0 0 0 5  |
|   |---------|-----|-------|---------|-----------|-------------|
|   | A127093 |     |  1    |  1 2    |  1 0 3    |  1 2 0 4    |
|   |---------|-----|-------|---------|-----------|-------------|
| D | A127093 |     |       |  1      |  1 2      |  1 0 3      |
| I | A127093 |     |       |  1      |  1 2      |  1 0 3      |
| V |---------|-----|-------|---------|-----------|-------------|
| I | A127093 |     |       |         |  1        |  1 2        |
| S | A127093 |     |       |         |  1        |  1 2        |
| O | A127093 |     |       |         |  1        |  1 2        |
| R |---------|-----|-------|---------|-----------|-------------|
| S | A127093 |     |       |         |           |  1          |
|   | A127093 |     |       |         |           |  1          |
|   | A127093 |     |       |         |           |  1          |
|   | A127093 |     |       |         |           |  1          |
|   | A127093 |     |       |         |           |  1          |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
|   | A127093 |  1  |  1 2  |  1 0 3  |  1 2 0 4  |  1 0 0 0 5  |
| C | A127093 |     |  1    |  1 2    |  1 0 3    |  1 2 0 4    |
| O |    -    |     |       |  2      |  2 4      |  2 0 6      |
| N |    -    |     |       |         |  3        |  3 6        |
| D |    -    |     |       |         |           |  5          |
|---|---------|-----|-------|---------|-----------|-------------|
.
This lower zone of the table is a condensed version of the "divisors" zone.
		

Crossrefs

Programs

Previous Showing 101-110 of 287 results. Next