cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A317297 a(n) = (n - 1)*(4*n^2 - 8*n + 5).

Original entry on oeis.org

0, 5, 34, 111, 260, 505, 870, 1379, 2056, 2925, 4010, 5335, 6924, 8801, 10990, 13515, 16400, 19669, 23346, 27455, 32020, 37065, 42614, 48691, 55320, 62525, 70330, 78759, 87836, 97585, 108030, 119195, 131104, 143781, 157250, 171535, 186660, 202649, 219526, 237315, 256040, 275725, 296394, 318071
Offset: 1

Views

Author

Omar E. Pol, Sep 01 2018

Keywords

Comments

Conjecture: For n > 1, a(n) is the maximum eigenvalue of a 2*(n-1) X 2*(n-1) square matrix M defined as M[i,j,n] = j + n*(i-1) if i is odd and M[i,j,n] = n*i - j + 1 if i is even (see A317614). - Stefano Spezia, Dec 27 2018
Connections can be made to A022144 and A010014. Namely, a formula for A022144 is (2*n+1)^2 - (2*n-1)^2. A formula for A010014 is (2*n+1)^3 - (2*n-1)^3. The general form can be represented by (2*n+1)^d - (2*n-1)^d, where d designates the number of dimensions. When d is 4, a(n) = ((2*(n-1)+1)^4 - (2*(n-1)-1)^4)/16, namely the general form shifted by 1 and divided by 16 is a(n). - Yigit Oktar, Aug 16 2024

Crossrefs

First bisection of A006003.
Nonzero terms give the row sums of A007607.
Conjecture: 0 together with a bisection of A246697.
Cf. A219086 (partial sums).
Cf. A010014, A022144 (see comments)

Programs

  • Mathematica
    Table[(n - 1) (4 n^2 - 8 n + 5), {n, 1, 50}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 5, 34, 111}, 50] (* or *) CoefficientList[Series[x (5 + 14 x + 5 x^2)/(1 - x)^4, {x, 0, 50}], x] (* Stefano Spezia, Sep 01 2018 *)
  • PARI
    a(n) = (n - 1)*(4*n^2 - 8*n + 5)
    
  • PARI
    concat(0, Vec(x^2*(5 + 14*x + 5*x^2)/(1 - x)^4 + O(x^50))) \\ Colin Barker, Sep 01 2018

Formula

a(n) = 4*n^3 - 12*n^2 + 13*n - 5 = A033430(n) - A135453(n) + A008595(n) - 5.
G.f.: x^2*(5 + 14*x + 5*x^2)/(1 - x)^4. - Colin Barker, Sep 01 2018
a(n) = 4*a(n - 1) - 6*a(n - 2) + 4*a(n - 3) - a(n - 4) for n > 4. - Stefano Spezia, Sep 01 2018
E.g.f.: exp(x)*(5*x + 12*x^2 + 4*x^3). - Stefano Spezia, Jan 15 2019
a(n) = ((2*(n-1)+1)^4 - (2*(n-1)-1)^4)/16. - Yigit Oktar, Aug 16 2024

A158480 a(n) = 12*n^2 + 1.

Original entry on oeis.org

1, 13, 49, 109, 193, 301, 433, 589, 769, 973, 1201, 1453, 1729, 2029, 2353, 2701, 3073, 3469, 3889, 4333, 4801, 5293, 5809, 6349, 6913, 7501, 8113, 8749, 9409, 10093, 10801, 11533, 12289, 13069, 13873, 14701, 15553, 16429, 17329, 18253, 19201, 20173, 21169
Offset: 0

Views

Author

Vincenzo Librandi, Mar 20 2009

Keywords

Comments

The identity (12*n^2 + 1)^2 - (36*n^2 + 6)*(2*n)^2 = 1 can be written as a(n)^2 - A158479(n)*A005843(n)^2 = 1.
Sequence found by reading the line from 13, in the direction 13, 49, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. - Omar E. Pol, Jul 18 2012

Examples

			a(1) = 12*1^2 + 1 = 13.
a(2) = 12*2^2 + 1 = 49.
a(3) = 12*3^2 + 1 = 109.
		

Crossrefs

Programs

  • GAP
    List([1..40], n-> 12*n^2 + 1); # G. C. Greubel, Nov 06 2019
  • Magma
    I:=[13,49,109];[n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2) +Self(n-3): n in [1..50]];
    
  • Maple
    seq(12*n^2 +1, n=0..45); # G. C. Greubel, Nov 06 2019
  • Mathematica
    LinearRecurrence[{3,-3,1}, {13,49,109}, 40]
    12*Range[40]^2 +1 (* G. C. Greubel, Nov 06 2019 *)
  • PARI
    a(n)=12*n^2+1
    
  • Sage
    [12*n^2 +1 for n in (1..40)] # G. C. Greubel, Nov 06 2019
    

Formula

a(n) = A010014(n)/2. - Vladimir Joseph Stephan Orlovsky, May 18 2009
G.f: (13*x^2 + 10*x + 1)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = 1 + A135453(n). - Omar E. Pol, Jul 18 2012
a(n) = (A016969(n-1)*A016921(n) + 4)/3. - Hilko Koning, Oct 25 2019
E.g.f.: (1 + 12*x + 12*x^2)*exp(x). - G. C. Greubel, Nov 06 2019
From Amiram Eldar, Jul 15 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + (Pi/sqrt(12))*coth(Pi/sqrt(12)))/2.
Sum_{n>=0} (-1)^n/a(n) = (1 + (Pi/sqrt(12))*csch(Pi/sqrt(12)))/2. (End)
From Amiram Eldar, Feb 05 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = sqrt(2)*csch(Pi/sqrt(12))*sinh(Pi/sqrt(6)).
Product_{n>=1} (1 - 1/a(n)) = (Pi/sqrt(12))*csch(Pi/sqrt(12)). (End)

Extensions

a(0)=1 prepended by Alois P. Heinz, Jun 12 2021

A299965 Number of triangles in a Star of David of size n.

Original entry on oeis.org

0, 20, 118, 354, 788, 1480, 2490, 3878, 5704, 8028, 10910, 14410, 18588, 23504, 29218, 35790, 43280, 51748, 61254, 71858, 83620, 96600, 110858, 126454, 143448, 161900, 181870, 203418, 226604, 251488, 278130, 306590, 336928, 369204, 403478, 439810, 478260, 518888
Offset: 0

Views

Author

John King, Feb 22 2018

Keywords

Comments

In a Star of David of size n, there are A135453(n) "size=1" triangles.
The number of matchstick units is A045946.

Examples

			For n=1, there are 12 (size=1) + 6 (size=4) + 2 (size=9) = 20 triangles.
		

Crossrefs

For the total number of triangles in a different arrangement, see A002717 (for triangular matchstick), A045949 (for hexagonal matchstick).

Programs

  • Mathematica
    A299965[n_] := n*(n*(10*n + 9) + 1); Array[A299965, 50, 0] (* or *)
    LinearRecurrence[{4, -6, 4, -1}, {0, 20, 118, 354}, 50] (* Paolo Xausa, Sep 18 2024 *)
  • PARI
    concat(0, Vec(2*x*(10 + 19*x + x^2) / (1 - x)^4 + O(x^40))) \\ Colin Barker, Apr 04 2019

Formula

a(n) = n*(10*n^2+9*n+1) = 2*A045950(n).
From Colin Barker, Apr 04 2019: (Start)
G.f.: 2*x*(10 + 19*x + x^2) / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3. (End)
E.g.f.: exp(x)*x*(20 + 39*x + 10*x^2). - Stefano Spezia, Sep 20 2024

Extensions

Corrected by John King, Stefano Spezia, and Paolo Xausa, Sep 20 2024

A303302 a(n) = 34*n^2.

Original entry on oeis.org

0, 34, 136, 306, 544, 850, 1224, 1666, 2176, 2754, 3400, 4114, 4896, 5746, 6664, 7650, 8704, 9826, 11016, 12274, 13600, 14994, 16456, 17986, 19584, 21250, 22984, 24786, 26656, 28594, 30600, 32674, 34816, 37026, 39304, 41650, 44064, 46546, 49096, 51714, 54400, 57154, 59976, 62866, 65824, 68850, 71944
Offset: 0

Views

Author

Omar E. Pol, May 13 2018

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 34, ..., in the square spiral whose vertices are the generalized 19-gonal numbers A303813.

Crossrefs

Cf. similar sequences of the type k*n^2: A000290 (k=1), A001105 (k=2), A033428 (k=3), A016742 (k=4), A033429 (k=5), A033581 (k=6), A033582 (k=7), A139098 (k=8), A016766 (k=9), A033583 (k=10), A033584 (k=11), A135453 (k=12), A152742 (k=13), A144555 (k=14), A064761 (k=15), A016802 (k=16), A244630 (k=17), A195321 (k=18), A244631 (k=19), A195322 (k=20), A064762 (k=21), A195323 (k=22), A244632 (k=23), A195824 (k=24), A016850 (k=25), A244633 (k=26), A244634 (k=27), A064763 (k=28), A244635 (k=29), A244636 (k=30), A244082 (k=32), this sequence (k=34), A016910 (k=36), A016982 (k=49), A017066 (k=64), A017162 (k=81), A017270 (k=100), A017390 (k=121), A017522 (k=144).

Programs

  • Magma
    [34*n^2: n in [0..50]]; // Vincenzo Librandi Jun 07 2018
  • Mathematica
    Table[34 n^2, {n, 0, 40}]
    LinearRecurrence[{3,-3,1},{0,34,136},50] (* Harvey P. Dale, Jul 23 2018 *)
  • PARI
    a(n) = 34*n^2;
    
  • PARI
    concat(0, Vec(34*x*(1 + x) / (1 - x)^3 + O(x^40))) \\ Colin Barker, Jun 12 2018
    

Formula

a(n) = 34*A000290(n) = 17*A001105(n) = 2*A244630(n).
G.f.: 34*x*(1 + x)/(1 - x)^3. - Vincenzo Librandi, Jun 07 2018
From Elmo R. Oliveira, Dec 02 2024: (Start)
E.g.f.: 34*x*(1 + x)*exp(x).
a(n) = A005843(n)*A008599(n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A256695 Integer areas A of integer-sided triangles (a, b, c) such that the area of the triangle (a+b, a+c, b+c) is also an integer.

Original entry on oeis.org

12, 48, 108, 192, 300, 432, 588, 768, 972, 1008, 1200, 1452, 1728, 2028, 2352, 2448, 2520, 2700, 2772, 3060, 3072, 3468, 3888, 4032, 4332, 4800, 5292, 5808, 6348, 6912, 7500, 8112, 8748, 9072, 9408, 9792, 10080, 10092, 10800, 11088, 11532, 11628, 12240, 12288
Offset: 1

Views

Author

Michel Lagneau, Apr 08 2015

Keywords

Comments

The areas of the primitive triangles are 12, 2520, 2772, 3060, 4032, 5808, 9072, 11088, 11628, 17136, 24948, 41580, ...
The area A of a triangle whose sides have lengths a, b, and c is given by Heron's formula: A = sqrt(s*(s-a)*(s-b)*(s-c)), where s = (a+b+c)/2.
The sequence A135453 (numbers of the form 12*n^2) is included in the sequence because a(1) = 12 is a primitive triangle of the subsequence k^2*a(1), k=1,2,3,...
The following table gives the first values (A, A', a, b, c) where A is the integer area of the triangle (a, b, c), A' is the integer area of the triangle (a+b, a+c, b+c).
+-------+--------+------+------+------+
| A | A' | a | b | c |
+-------+--------+------+------+------+
| 12 | 60 | 5 | 5 | 8 |
| 48 | 240 | 10 | 10 | 16 |
| 108 | 540 | 15 | 15 | 24 |
| 192 | 960 | 20 | 20 | 32 |
| 300 | 1500 | 25 | 25 | 40 |
| 432 | 2160 | 30 | 30 | 48 |
| 588 | 2940 | 35 | 35 | 56 |
| 768 | 3840 | 40 | 40 | 64 |
| 972 | 4860 | 45 | 45 | 72 |
+-------+--------+------+------+------+
We find a majority of isosceles triangles, but there is a subsequence of non-isosceles triangles with areas 2520, 3060, 10080, 11088, ...
+--------+----------+-------+-------+-------+
| A | A' | a | b | c |
+--------+----------+-------+-------+-------+
| 2520 | 18270 | 29 | 174 | 175 |
| 3060 | 33150 | 39 | 221 | 250 |
| 10080 | 73080 | 58 | 348 | 350 |
| 11088 | 64350 | 150 | 169 | 275 |
| 12240 | 12240 | 78 | 442 | 500 |
| 17136 | 92820 | 168 | 221 | 325 |
| 41580 | 183150 | 250 | 333 | 407 |
+--------+----------+-------+-------+-------+

Examples

			a(1) = 12 because, for (a,b,c) = (5, 5, 8) => s = (5+5+8)/2 = 9, and
A = sqrt(9(9-5)(9-5)(9-8)) = sqrt(144) = 12 and the triangle (5+5, 5+8, 5+8) = (10, 13, 13)=> s1 = (10+13+13)/2 = 18, and A1 = sqrt(18(18-10)(18-13)(18-13)) = sqrt(3600) = 60 is an integer.
		

Crossrefs

Programs

  • Mathematica
    nn=1000;lst={};Do[s=(a+b+c)/2;If[IntegerQ[s],area2=s(s-a)(s-b)(s-c);u=a+b;v=a+c;w=b+c;s1=(u+v+w)/2;area3=s1(s1-u)(s1-v)(s1-w);If[area2>0&&area3>0&&IntegerQ[Sqrt[area2]]&&IntegerQ[Sqrt[area3]], AppendTo[lst,Sqrt[area2]]]],{a,nn},{b,a},{c,b}];Union[lst]

A363436 Array read by ascending antidiagonals: A(n, k) = k*n^2, with k >= 0.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 4, 2, 0, 0, 9, 8, 3, 0, 0, 16, 18, 12, 4, 0, 0, 25, 32, 27, 16, 5, 0, 0, 36, 50, 48, 36, 20, 6, 0, 0, 49, 72, 75, 64, 45, 24, 7, 0, 0, 64, 98, 108, 100, 80, 54, 28, 8, 0, 0, 81, 128, 147, 144, 125, 96, 63, 32, 9, 0, 0, 100, 162, 192, 196, 180, 150, 112, 72, 36, 10, 0
Offset: 0

Views

Author

Stefano Spezia, Jul 08 2023

Keywords

Examples

			The array begins:
  0,  0,  0,   0,   0,   0,   0, ...
  0,  1,  2,   3,   4,   5,   6, ...
  0,  4,  8,  12,  16,  20,  24, ...
  0,  9, 18,  27,  36,  45,  54, ...
  0, 16, 32,  48,  64,  80,  96, ...
  0, 25, 50,  75, 100, 125, 150, ...
  0, 36, 72, 108, 144, 180, 216, ...
  ...
		

Crossrefs

Cf. A000290 (k = 1), A001105 (k = 2), A033428 (k = 3), A016742 (k = 4), A033429 (k = 5), A033581 (k = 6), A033582 (k = 7), A139098 (k = 8), A016766 (k = 9), A033583 (k = 10), A033584 (k = 11), A135453 (k = 12), A152742 (k = 13), A144555 (k = 14), A064761 (k = 15), A016802 (k = 16), A244630 (k = 17), A195321 (k = 18), A244631 (k = 19), A195322 (k = 20), A064762 (k = 21), A195323 (k = 22), A244632 (k = 23), A195824 (k = 24), A016850 (k = 25), A244633 (k = 26), A244634 (k = 27), A064763 (k = 28), A244635 (k = 29), A244636 (k = 30).
Cf. A001477 (n = 1), A008586 (n = 2), A008591 (n = 3), A008598 (n = 4), A008607 (n = 5), A044102 (n = 6), A152691 (n = 8).
Cf. A000007 (n = 0 or k = 0), A000578 (main diagonal), A002415 (antidiagonal sums), A004247.

Programs

  • Mathematica
    A[n_,k_]:=k n^2; Table[A[n-k,k],{n,0,11},{k,0,n}]//Flatten

Formula

O.g.f.: x*y*(1 + x)/((1 - x)^3*(1 - y)^2).
E.g.f.: x*y*(1 + x)*exp(x + y).
A(n, k) = n*A004247(n, k).
Previous Showing 11-16 of 16 results.