cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A361813 Expansion of 1/sqrt(1 - 4*x*(1+x)^4).

Original entry on oeis.org

1, 2, 14, 80, 486, 3030, 19184, 122924, 794678, 5173160, 33863666, 222683588, 1469908848, 9733916596, 64636957300, 430240178484, 2869778018070, 19177245746844, 128361805431752, 860443079597872, 5775392952659170, 38811408514848032, 261101034656317244
Offset: 0

Views

Author

Seiichi Manyama, Mar 25 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x*(1+x)^4))

Formula

a(n) = Sum_{k=0..n} binomial(2*k,k) * binomial(4*k,n-k).
n*a(n) = 2 * ( (2*n-1)*a(n-1) + 4*(2*n-2)*a(n-2) + 6*(2*n-3)*a(n-3) + 4*(2*n-4)*a(n-4) + (2*n-5)*a(n-5) ) for n > 4.

A361814 Expansion of 1/sqrt(1 - 4*x*(1+x)^5).

Original entry on oeis.org

1, 2, 16, 100, 660, 4482, 30886, 215364, 1515000, 10730800, 76426846, 546792056, 3926775646, 28290272420, 204375145480, 1479963148220, 10739326203132, 78072933869364, 568503202324540, 4145718464390120, 30271771382355430, 221305746414518180
Offset: 0

Views

Author

Seiichi Manyama, Mar 25 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x*(1+x)^5))
    
  • PARI
    a(n)= sum(k=0, n, binomial(2*k,k) * binomial(5*k,n-k)) \\ Winston de Greef, Mar 25 2023

Formula

a(n) = Sum_{k=0..n} binomial(2*k,k) * binomial(5*k,n-k).
n*a(n) = 2 * ( (2*n-1)*a(n-1) + 5*(2*n-2)*a(n-2) + 10*(2*n-3)*a(n-3) + 10*(2*n-4)*a(n-4) + 5*(2*n-5)*a(n-5) + (2*n-6)*a(n-6) ) for n > 5.

A361830 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} binomial(2*j,j) * binomial(k*j,n-j).

Original entry on oeis.org

1, 1, 2, 1, 2, 6, 1, 2, 8, 20, 1, 2, 10, 32, 70, 1, 2, 12, 46, 136, 252, 1, 2, 14, 62, 226, 592, 924, 1, 2, 16, 80, 342, 1136, 2624, 3432, 1, 2, 18, 100, 486, 1932, 5810, 11776, 12870, 1, 2, 20, 122, 660, 3030, 11094, 30080, 53344, 48620
Offset: 0

Views

Author

Seiichi Manyama, Mar 26 2023

Keywords

Examples

			Square array begins:
    1,   1,    1,    1,    1,    1, ...
    2,   2,    2,    2,    2,    2, ...
    6,   8,   10,   12,   14,   16, ...
   20,  32,   46,   62,   80,  100, ...
   70, 136,  226,  342,  486,  660, ...
  252, 592, 1136, 1932, 3030, 4482, ...
		

Crossrefs

Columns k=0..5 give A000984, A006139, A137635, A361812, A361813, A361814.
Main diagonal gives A361829.

Programs

  • PARI
    T(n, k) = sum(j=0, n, binomial(2*j, j)*binomial(k*j, n-j));

Formula

G.f. of column k: 1/sqrt(1 - 4*x*(1+x)^k).
n*T(n,k) = 2 * Sum_{j=0..k} binomial(k,j)*(2*n-1-j)*T(n-1-j,k) for n > k.

A361841 Expansion of 1/(1 - 9*x*(1+x)^2)^(1/3).

Original entry on oeis.org

1, 3, 24, 201, 1809, 16893, 161676, 1574289, 15527052, 154662930, 1552725504, 15688410264, 159355067283, 1625899880673, 16652520666414, 171119405299005, 1763475423260049, 18219685282559559, 188664151412242368, 1957539823296458841, 20347733657193596127
Offset: 0

Views

Author

Seiichi Manyama, Mar 26 2023

Keywords

Crossrefs

Column k=2 of A361839.

Programs

  • Maple
    A361841 := n -> (-9)^n*binomial(-1/3, n)*hypergeom([1/3 - n*2/3, 2/3 - n*2/3, -n*2/3], [1/2 - n, 2/3 - n], -3/4):
    seq(simplify(A361841(n)), n = 0..20); # Peter Luschny, Mar 27 2023
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/(1-9*x*(1+x)^2)^(1/3))

Formula

n*a(n) = 3 * ( (3*n-2)*a(n-1) + 2*(3*n-4)*a(n-2) + (3*n-6)*a(n-3) ) for n > 2.
a(n) = Sum_{k=0..n} (-9)^k * binomial(-1/3,k) * binomial(2*k,n-k).
a(n) = (-9)^n*binomial(-1/3, n)*hypergeom([1/3 - n*2/3, 2/3 - n*2/3, -n*2/3], [1/2 - n, 2/3 - n], -3/4). - Peter Luschny, Mar 27 2023

A339565 Number of lattice paths from (0,0) to (n,n) using steps (0,1), (1,0), (1,1), (1,2), (2,1).

Original entry on oeis.org

1, 3, 17, 101, 627, 3999, 25955, 170571, 1131433, 7559301, 50795985, 342935689, 2324278669, 15804931797, 107775401349, 736723618773, 5046774983235, 34636814325087, 238114193665451, 1639378334244867, 11301978856210543, 78010917772099207, 539055832175992119
Offset: 0

Views

Author

Kent Mei, Dec 08 2020

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) local t; 1/(1-x-y-x*y-(x*y^2)-(x^2*y));
          for t in [x, y] do coeftayl(%, t=0, n) od
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Dec 09 2020
    # second Maple program:
    b:= proc(l) option remember; `if`(l[2]=0, 1,
          add((f-> `if`(f[1]<0, 0, b(f)))(sort(l-h)), h=
          [[1, 0], [0, 1], [1$2], [1, 2], [2, 1]]))
        end:
    a:= n-> b([n$2]):
    seq(a(n), n=0..25);  # Alois P. Heinz, Dec 09 2020
    # third Maple program:
    a:= proc(n) option remember; `if`(n<3, [1, 3, 17][n+1],
          ((6*n-3)*a(n-1)+(7*n-7)*a(n-2)+(4*n-6)*a(n-3))/n)
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Dec 09 2020
  • Mathematica
    b[l_] := b[l] = If[l[[2]] == 0, 1,
         Sum[Function[f, If[f[[1]] < 0, 0, b[f]]][Sort[l - h]], {h,
         {{1, 0}, {0, 1}, {1, 1}, {1, 2}, {2, 1}}}]];
    a[n_] := b[{n, n}];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, May 30 2022, after Alois P. Heinz *)

Formula

a(n) = [(x*y)^n] 1/(1-x-y-x*y-x*y^2-x^2*y). - Alois P. Heinz, Dec 09 2020
a(n) = A382436(2n,n). - Alois P. Heinz, Mar 25 2025
a(n) ~ sqrt((3776 + (26570110976 - 74946048*sqrt(177))^(1/3) + 8*(59*(879572 + 2481*sqrt(177)))^(1/3))/11328) * (2 + (459 - 12*sqrt(177))^(1/3)/3 + (153 + 4*sqrt(177))^(1/3)/3^(2/3))^n / sqrt(Pi*n). - Vaclav Kotesovec, Mar 26 2025

A361726 Diagonal of rational function 1/(1 - (1 + x*y) * (x^2 + y^2)).

Original entry on oeis.org

1, 0, 2, 4, 8, 24, 56, 144, 376, 960, 2512, 6560, 17184, 45248, 119296, 315392, 835552, 2217216, 5893568, 15687552, 41810944, 111567104, 298016512, 796832256, 2132456704, 5711486976, 15309014528, 41062927360, 110213725184, 295995574272, 795391639552
Offset: 0

Views

Author

Seiichi Manyama, Mar 22 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, binomial(2*k, k)*binomial(2*k, n-2*k));

Formula

G.f.: 1/sqrt(1 - 4 * x^2 * (1+x)^2).
a(n) = Sum_{k=0..floor(n/2)} binomial(2*k,k) * binomial(2*k,n-2*k).
a(n) ~ (1 + sqrt(3))^(n + 1/2) / (2*3^(1/4)*sqrt(Pi*n)). - Vaclav Kotesovec, Mar 22 2023
n*a(n) = 2*(2*n-2)*a(n-2) + 4*(2*n-3)*a(n-3) + 2*(2*n-4)*a(n-4) for n > 3. - Seiichi Manyama, Mar 23 2023

A361727 Diagonal of rational function 1/(1 - (1 + x*y) * (x^3 + y^3)).

Original entry on oeis.org

1, 0, 0, 2, 4, 2, 6, 24, 36, 44, 126, 300, 470, 860, 2080, 4192, 7420, 15260, 33124, 64568, 124558, 259632, 535668, 1055460, 2118414, 4373412, 8872644, 17765396, 36138168, 73972404, 149793424, 303140552, 618565948, 1261454064, 2561056212, 5211145368
Offset: 0

Views

Author

Seiichi Manyama, Mar 22 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(2*k, k)*binomial(2*k, n-3*k));

Formula

G.f.: 1/sqrt(1 - 4 * x^3 * (1+x)^2).
a(n) = Sum_{k=0..floor(n/3)} binomial(2*k,k) * binomial(2*k,n-3*k).
From Vaclav Kotesovec, Mar 22 2023: (Start)
Recurrence: n*a(n) = 2*(2*n-3)*a(n-3) + 8*(n-2)*a(n-4) + 2*(2*n-5)*a(n-5).
a(n) ~ 1 / (sqrt((5 - 8*r^3 - 8*r^4)*Pi*n) * r^n), where r = 0.484163615233802299545617907511361266999078019358842974840776720... is the real root of the equation -1 + 4*r^3 + 8*r^4 + 4*r^5 = 0. (End)

A377194 Expansion of 1/(1 - 4*x*(1+x)^2)^(3/2).

Original entry on oeis.org

1, 6, 42, 266, 1650, 10032, 60202, 357744, 2109882, 12369280, 72163560, 419315340, 2428226530, 14021002860, 80757350040, 464127134636, 2662303793226, 15245389224492, 87168383093576, 497721319382220, 2838427001118456, 16168991846946656, 92012074475132892
Offset: 0

Views

Author

Seiichi Manyama, Oct 19 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[(2*k+1)Binomial[2*k,k]Binomial[2k,n-k],{k,0,n}]; Array[a,23,0] (* Stefano Spezia, May 08 2025 *)
  • PARI
    a(n) = sum(k=0, n, (2*k+1)*binomial(2*k, k)*binomial(2*k, n-k));

Formula

a(0) = 1, a(1) = 6, a(2) = 42; a(n) = (2*(2*n+1)*a(n-1) + 8*(n+1)*a(n-2) + 2*(2*n+3)*a(n-3))/n.
a(n) = Sum_{k=0..n} (2*k+1) * binomial(2*k,k) * binomial(2*k,n-k).

A361752 a(n) = Sum_{k=0..floor(n/2)} binomial(2*(n-2*k),k) * binomial(2*(n-2*k),n-2*k).

Original entry on oeis.org

1, 2, 6, 24, 94, 374, 1520, 6252, 25942, 108408, 455586, 1923444, 8151856, 34661252, 147788484, 631660788, 2705471254, 11609393084, 49899207640, 214792704256, 925811868178, 3995288307392, 17260287754284, 74641620619072, 323080683587056, 1399606566298916
Offset: 0

Views

Author

Seiichi Manyama, Mar 23 2023

Keywords

Comments

Diagonal of rational function 1/(1 - (1 + (x*y)^2) * (x + y)).

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, binomial(2*(n-2*k), k)*binomial(2*(n-2*k), n-2*k));
    
  • Python
    from math import comb
    def A361752(n): return sum(comb(m:=(r:=n-(k<<1))<<1,k)*comb(m,r) for k in range((n>>1)+1)) # Chai Wah Wu, Mar 23 2023

Formula

G.f.: 1/sqrt(1 - 4*x*(1 + x^2)^2).
n*a(n) = 2*(2*n-1)*a(n-1) + 4*(2*n-3)*a(n-3) + 2*(2*n-5)*a(n-5) for n > 4.

A361753 a(n) = Sum_{k=0..floor(n/3)} binomial(2*(n-3*k),k) * binomial(2*(n-3*k),n-3*k).

Original entry on oeis.org

1, 2, 6, 20, 74, 276, 1044, 3994, 15426, 60008, 234764, 922716, 3640700, 14411952, 57210750, 227659704, 907853778, 3627085932, 14515139376, 58174092472, 233463067284, 938061587212, 3773298437204, 15193083455580, 61230698571372, 246978403761112
Offset: 0

Views

Author

Seiichi Manyama, Mar 23 2023

Keywords

Comments

Diagonal of rational function 1/(1 - (1 + (x*y)^3) * (x + y)).

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(2*(n-3*k), k)*binomial(2*(n-3*k), n-3*k));
    
  • Python
    from math import comb
    def A361753(n): return sum(comb(m:=(r:=n-3*k)<<1,k)*comb(m,r) for k in range(n//3+1)) # Chai Wah Wu, Mar 23 2023

Formula

G.f.: 1/sqrt(1 - 4*x*(1 + x^3)^2).
Recurrence: n*a(n) = 2*(2*n-1)*a(n-1) + 8*(n-2)*a(n-4) + 2*(2*n-7)*a(n-7). - Vaclav Kotesovec, Mar 23 2023
Previous Showing 11-20 of 22 results. Next