A361813
Expansion of 1/sqrt(1 - 4*x*(1+x)^4).
Original entry on oeis.org
1, 2, 14, 80, 486, 3030, 19184, 122924, 794678, 5173160, 33863666, 222683588, 1469908848, 9733916596, 64636957300, 430240178484, 2869778018070, 19177245746844, 128361805431752, 860443079597872, 5775392952659170, 38811408514848032, 261101034656317244
Offset: 0
A361814
Expansion of 1/sqrt(1 - 4*x*(1+x)^5).
Original entry on oeis.org
1, 2, 16, 100, 660, 4482, 30886, 215364, 1515000, 10730800, 76426846, 546792056, 3926775646, 28290272420, 204375145480, 1479963148220, 10739326203132, 78072933869364, 568503202324540, 4145718464390120, 30271771382355430, 221305746414518180
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x*(1+x)^5))
-
a(n)= sum(k=0, n, binomial(2*k,k) * binomial(5*k,n-k)) \\ Winston de Greef, Mar 25 2023
A361830
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} binomial(2*j,j) * binomial(k*j,n-j).
Original entry on oeis.org
1, 1, 2, 1, 2, 6, 1, 2, 8, 20, 1, 2, 10, 32, 70, 1, 2, 12, 46, 136, 252, 1, 2, 14, 62, 226, 592, 924, 1, 2, 16, 80, 342, 1136, 2624, 3432, 1, 2, 18, 100, 486, 1932, 5810, 11776, 12870, 1, 2, 20, 122, 660, 3030, 11094, 30080, 53344, 48620
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
2, 2, 2, 2, 2, 2, ...
6, 8, 10, 12, 14, 16, ...
20, 32, 46, 62, 80, 100, ...
70, 136, 226, 342, 486, 660, ...
252, 592, 1136, 1932, 3030, 4482, ...
-
T(n, k) = sum(j=0, n, binomial(2*j, j)*binomial(k*j, n-j));
A361841
Expansion of 1/(1 - 9*x*(1+x)^2)^(1/3).
Original entry on oeis.org
1, 3, 24, 201, 1809, 16893, 161676, 1574289, 15527052, 154662930, 1552725504, 15688410264, 159355067283, 1625899880673, 16652520666414, 171119405299005, 1763475423260049, 18219685282559559, 188664151412242368, 1957539823296458841, 20347733657193596127
Offset: 0
-
A361841 := n -> (-9)^n*binomial(-1/3, n)*hypergeom([1/3 - n*2/3, 2/3 - n*2/3, -n*2/3], [1/2 - n, 2/3 - n], -3/4):
seq(simplify(A361841(n)), n = 0..20); # Peter Luschny, Mar 27 2023
-
my(N=30, x='x+O('x^N)); Vec(1/(1-9*x*(1+x)^2)^(1/3))
A339565
Number of lattice paths from (0,0) to (n,n) using steps (0,1), (1,0), (1,1), (1,2), (2,1).
Original entry on oeis.org
1, 3, 17, 101, 627, 3999, 25955, 170571, 1131433, 7559301, 50795985, 342935689, 2324278669, 15804931797, 107775401349, 736723618773, 5046774983235, 34636814325087, 238114193665451, 1639378334244867, 11301978856210543, 78010917772099207, 539055832175992119
Offset: 0
-
a:= proc(n) local t; 1/(1-x-y-x*y-(x*y^2)-(x^2*y));
for t in [x, y] do coeftayl(%, t=0, n) od
end:
seq(a(n), n=0..25); # Alois P. Heinz, Dec 09 2020
# second Maple program:
b:= proc(l) option remember; `if`(l[2]=0, 1,
add((f-> `if`(f[1]<0, 0, b(f)))(sort(l-h)), h=
[[1, 0], [0, 1], [1$2], [1, 2], [2, 1]]))
end:
a:= n-> b([n$2]):
seq(a(n), n=0..25); # Alois P. Heinz, Dec 09 2020
# third Maple program:
a:= proc(n) option remember; `if`(n<3, [1, 3, 17][n+1],
((6*n-3)*a(n-1)+(7*n-7)*a(n-2)+(4*n-6)*a(n-3))/n)
end:
seq(a(n), n=0..25); # Alois P. Heinz, Dec 09 2020
-
b[l_] := b[l] = If[l[[2]] == 0, 1,
Sum[Function[f, If[f[[1]] < 0, 0, b[f]]][Sort[l - h]], {h,
{{1, 0}, {0, 1}, {1, 1}, {1, 2}, {2, 1}}}]];
a[n_] := b[{n, n}];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, May 30 2022, after Alois P. Heinz *)
A361726
Diagonal of rational function 1/(1 - (1 + x*y) * (x^2 + y^2)).
Original entry on oeis.org
1, 0, 2, 4, 8, 24, 56, 144, 376, 960, 2512, 6560, 17184, 45248, 119296, 315392, 835552, 2217216, 5893568, 15687552, 41810944, 111567104, 298016512, 796832256, 2132456704, 5711486976, 15309014528, 41062927360, 110213725184, 295995574272, 795391639552
Offset: 0
-
a(n) = sum(k=0, n\2, binomial(2*k, k)*binomial(2*k, n-2*k));
A361727
Diagonal of rational function 1/(1 - (1 + x*y) * (x^3 + y^3)).
Original entry on oeis.org
1, 0, 0, 2, 4, 2, 6, 24, 36, 44, 126, 300, 470, 860, 2080, 4192, 7420, 15260, 33124, 64568, 124558, 259632, 535668, 1055460, 2118414, 4373412, 8872644, 17765396, 36138168, 73972404, 149793424, 303140552, 618565948, 1261454064, 2561056212, 5211145368
Offset: 0
-
a(n) = sum(k=0, n\3, binomial(2*k, k)*binomial(2*k, n-3*k));
A377194
Expansion of 1/(1 - 4*x*(1+x)^2)^(3/2).
Original entry on oeis.org
1, 6, 42, 266, 1650, 10032, 60202, 357744, 2109882, 12369280, 72163560, 419315340, 2428226530, 14021002860, 80757350040, 464127134636, 2662303793226, 15245389224492, 87168383093576, 497721319382220, 2838427001118456, 16168991846946656, 92012074475132892
Offset: 0
-
a[n_]:=Sum[(2*k+1)Binomial[2*k,k]Binomial[2k,n-k],{k,0,n}]; Array[a,23,0] (* Stefano Spezia, May 08 2025 *)
-
a(n) = sum(k=0, n, (2*k+1)*binomial(2*k, k)*binomial(2*k, n-k));
A361752
a(n) = Sum_{k=0..floor(n/2)} binomial(2*(n-2*k),k) * binomial(2*(n-2*k),n-2*k).
Original entry on oeis.org
1, 2, 6, 24, 94, 374, 1520, 6252, 25942, 108408, 455586, 1923444, 8151856, 34661252, 147788484, 631660788, 2705471254, 11609393084, 49899207640, 214792704256, 925811868178, 3995288307392, 17260287754284, 74641620619072, 323080683587056, 1399606566298916
Offset: 0
-
a(n) = sum(k=0, n\2, binomial(2*(n-2*k), k)*binomial(2*(n-2*k), n-2*k));
-
from math import comb
def A361752(n): return sum(comb(m:=(r:=n-(k<<1))<<1,k)*comb(m,r) for k in range((n>>1)+1)) # Chai Wah Wu, Mar 23 2023
A361753
a(n) = Sum_{k=0..floor(n/3)} binomial(2*(n-3*k),k) * binomial(2*(n-3*k),n-3*k).
Original entry on oeis.org
1, 2, 6, 20, 74, 276, 1044, 3994, 15426, 60008, 234764, 922716, 3640700, 14411952, 57210750, 227659704, 907853778, 3627085932, 14515139376, 58174092472, 233463067284, 938061587212, 3773298437204, 15193083455580, 61230698571372, 246978403761112
Offset: 0
-
a(n) = sum(k=0, n\3, binomial(2*(n-3*k), k)*binomial(2*(n-3*k), n-3*k));
-
from math import comb
def A361753(n): return sum(comb(m:=(r:=n-3*k)<<1,k)*comb(m,r) for k in range(n//3+1)) # Chai Wah Wu, Mar 23 2023
Comments