cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 102 results. Next

A332140 a(n) = 4*(10^(2n+1)-1)/9 - 4*10^n.

Original entry on oeis.org

0, 404, 44044, 4440444, 444404444, 44444044444, 4444440444444, 444444404444444, 44444444044444444, 4444444440444444444, 444444444404444444444, 44444444444044444444444, 4444444444440444444444444, 444444444444404444444444444, 44444444444444044444444444444, 4444444444444440444444444444444
Offset: 0

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Crossrefs

Cf. A002275 (repunits R_n = (10^n-1)/9), A002278 (4*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332120 .. A332190 (variants with different repeated digit 2, ..., 9).
Cf. A332141 .. A332149 (variants with different middle digit 1, ..., 9).

Programs

  • Maple
    A332140 := n -> 4*((10^(2*n+1)-1)/9-10^n);
  • Mathematica
    Array[4 ((10^(2 # + 1)-1)/9 - 10^#) &, 15, 0]
    LinearRecurrence[{111,-1110,1000},{0,404,44044},20] (* Harvey P. Dale, Jul 06 2021 *)
  • PARI
    apply( {A332140(n)=(10^(n*2+1)\9-10^n)*4}, [0..15])
    
  • Python
    def A332140(n): return (10**(n*2+1)//9-10**n)*4

Formula

a(n) = 4*A138148(n) = A002278(2n+1) - 4*10^n.
G.f.: 4*x*(101 - 200*x)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A332149 a(n) = 4*(10^(2*n+1)-1)/9 + 5*10^n.

Original entry on oeis.org

9, 494, 44944, 4449444, 444494444, 44444944444, 4444449444444, 444444494444444, 44444444944444444, 4444444449444444444, 444444444494444444444, 44444444444944444444444, 4444444444449444444444444, 444444444444494444444444444, 44444444444444944444444444444, 4444444444444449444444444444444
Offset: 0

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Crossrefs

Cf. A002275 (repunits R_n = (10^n-1)/9), A002278 (4*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332119 .. A332189 (variants with different repeated digit 1, ..., 8).
Cf. A332140 .. A332148 (variants with different middle digit 0, ..., 8).

Programs

  • Maple
    A332149 := n -> 4*(10^(2*n+1)-1)/9+5*10^n;
  • Mathematica
    Array[4 (10^(2 # + 1)-1)/9 + 5*10^# &, 15, 0]
  • PARI
    apply( {A332149(n)=10^(n*2+1)\9*4+5*10^n}, [0..15])
    
  • Python
    def A332149(n): return 10**(n*2+1)//9*4+5*10**n

Formula

a(n) = 4*A138148(n) + 9*10^n = A002278(2n+1) + 5*10^n.
G.f.: (9 - 505*x + 100*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A332150 a(n) = 5*(10^(2n+1)-1)/9 - 5*10^n.

Original entry on oeis.org

0, 505, 55055, 5550555, 555505555, 55555055555, 5555550555555, 555555505555555, 55555555055555555, 5555555550555555555, 555555555505555555555, 55555555555055555555555, 5555555555550555555555555, 555555555555505555555555555, 55555555555555055555555555555, 5555555555555550555555555555555
Offset: 0

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Crossrefs

Cf. A002275 (repunits R_n = (10^n-1)/9), A002279 (5*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332120 .. A332190 (variants with different repeated digit 2, ..., 9).
Cf. A332151 .. A332159 (variants with different middle digit 1, ..., 9).

Programs

  • Maple
    A332150 := n -> 5*((10^(2*n+1)-1)/9-10^n);
  • Mathematica
    Array[5 ((10^(2 # + 1)-1)/9 - 10^#) &, 15, 0]
    Table[With[{c=PadRight[{},n,5]},FromDigits[Join[c,{0},c]]],{n,0,15}] (* or *) LinearRecurrence[{111,-1110,1000},{0,505,55055},20] (* Harvey P. Dale, Jun 30 2025 *)
  • PARI
    apply( {A332150(n)=(10^(n*2+1)\9-10^n)*5}, [0..15])
    
  • Python
    def A332150(n): return (10**(n*2+1)//9-10**n)*5

Formula

a(n) = 5*A138148(n) = A002279(2n+1) - 5*10^n.
G.f.: 5*x*(101 - 200*x)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A332159 a(n) = 5*(10^(2*n+1)-1)/9 + 4*10^n.

Original entry on oeis.org

9, 595, 55955, 5559555, 555595555, 55555955555, 5555559555555, 555555595555555, 55555555955555555, 5555555559555555555, 555555555595555555555, 55555555555955555555555, 5555555555559555555555555, 555555555555595555555555555, 55555555555555955555555555555, 5555555555555559555555555555555
Offset: 0

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Crossrefs

Cf. A002275 (repunits R_n = (10^n-1)/9), A002279 (5*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332119 .. A332189 (variants with different repeated digit 1, ..., 8).
Cf. A332150 .. A332159 (variants with different middle digit 0, ..., 9).

Programs

  • Maple
    A332159 := n -> 5*(10^(2*n+1)-1)/9+4*10^n;
  • Mathematica
    Array[5 (10^(2 # + 1)-1)/9 + 4*10^# &, 15, 0]
    Table[FromDigits[Join[PadRight[{},n,5],PadRight[{9},n+1,5]]],{n,0,20}] (* or *) LinearRecurrence[ {111,-1110,1000},{9,595,55955},20] (* Harvey P. Dale, May 31 2023 *)
  • PARI
    apply( {A332159(n)=10^(n*2+1)\9*5+4*10^n}, [0..15])
    
  • Python
    def A332159(n): return 10**(n*2+1)//9*5+4*10**n

Formula

a(n) = 5*A138148(n) + 9*10^n = A002279(2n+1) + 4*10^n.
G.f.: (9 - 404*x - 100*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A332160 a(n) = 6*(10^(2n+1)-1)/9 - 6*10^n.

Original entry on oeis.org

0, 606, 66066, 6660666, 666606666, 66666066666, 6666660666666, 666666606666666, 66666666066666666, 6666666660666666666, 666666666606666666666, 66666666666066666666666, 6666666666660666666666666, 666666666666606666666666666, 66666666666666066666666666666, 6666666666666660666666666666666
Offset: 0

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Crossrefs

Cf. A002275 (repunits R_n = (10^n-1)/9), A002280 (6*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332161 .. A332169 (variants with different middle digit 1, ..., 9).
Cf. A332120 .. A332190 (variants with different repeated digit 2, ..., 9).

Programs

  • Maple
    A332160 := n -> 6*((10^(2*n+1)-1)/9-10^n);
  • Mathematica
    Array[6 ((10^(2 # + 1)-1)/9 - 10^#) &, 15, 0]
  • PARI
    apply( {A332160(n)=(10^(n*2+1)\9-10^n)*6}, [0..15])
    
  • Python
    def A332160(n): return (10**(n*2+1)//9-10**n)*6

Formula

a(n) = 6*A138148(n) = A002280(2n+1) - 6*10^n.
G.f.: 6*x*(101 - 200*x)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A332169 a(n) = 6*(10^(2*n+1)-1)/9 + 3*10^n.

Original entry on oeis.org

9, 696, 66966, 6669666, 666696666, 66666966666, 6666669666666, 666666696666666, 66666666966666666, 6666666669666666666, 666666666696666666666, 66666666666966666666666, 6666666666669666666666666, 666666666666696666666666666, 66666666666666966666666666666, 6666666666666669666666666666666
Offset: 0

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Crossrefs

Cf. A002275 (repunits R_n = (10^n-1)/9), A002280 (6*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332119 .. A332189 (variants with different repeated digit 1, ..., 8).
Cf. A332160 .. A332169 (variants with different middle digit 0, ..., 9).

Programs

  • Maple
    A332169 := n -> 6*(10^(2*n+1)-1)/9+3*10^n;
  • Mathematica
    Array[6 (10^(2 # + 1)-1)/9 + 3*10^# &, 15, 0]
  • PARI
    apply( {A332169(n)=10^(n*2+1)\9*6+3*10^n}, [0..15])
    
  • Python
    def A332169(n): return 10**(n*2+1)//9*6+3*10**n

Formula

a(n) = 6*A138148(n) + 9*10^n = A002280(2n+1) + 3*10^n = 3*A332123(n).
G.f.: (9 - 303*x - 300*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A332171 a(n) = 7*(10^(2n+1)-1)/9 - 6*10^n.

Original entry on oeis.org

1, 717, 77177, 7771777, 777717777, 77777177777, 7777771777777, 777777717777777, 77777777177777777, 7777777771777777777, 777777777717777777777, 77777777777177777777777, 7777777777771777777777777, 777777777777717777777777777, 77777777777777177777777777777, 7777777777777771777777777777777
Offset: 0

Views

Author

M. F. Hasler, Feb 06 2020

Keywords

Comments

For n == 0 or n == 2 (mod 6), there is no obvious divisibility pattern.
According to M. Kamada, n = 116 is the only index of a prime up to n = 10^5.

Crossrefs

Cf. A138148 (cyclops numbers with binary digits only), A002113 (palindromes).
Cf. A002275 (repunits R_n = [10^n/9]), A002281 (7*R_n), A011557 (10^n).
Cf. A332121 .. A332191 (variants with different repeated digit 2, ..., 9).
Cf. A332170 .. A332179 (variants with different middle digit 2, ..., 9).

Programs

  • Mathematica
    Array[7 (10^(2 # + 1) - 1)/9 - 6*10^# &, 15, 0] (* or *)
    CoefficientList[Series[(1 + 606 x - 1300 x^2)/((1 - x) (1 - 10 x) (1 - 100 x)), {x, 0, 15}], x] (* Michael De Vlieger, Feb 08 2020 *)
    Table[FromDigits[Join[PadRight[{},n,7],{1},PadRight[{},n,7]]],{n,0,20}] (* or *) LinearRecurrence[ {111,-1110,1000},{1,717,77177},20] (* Harvey P. Dale, Apr 04 2024 *)
  • PARI
    apply( {A332171(n)=10^(n*2+1)\9*7-6*10^n}, [0..15])
    
  • PARI
    Vec((1 + 606*x - 1300*x^2) / ((1 - x)*(1 - 10*x)*(1 - 100*x)) + O(x^15)) \\ Colin Barker, Feb 07 2020
    
  • Python
    def A332171(n): return 10**(n*2+1)//9*7-6*10^n

Formula

a(n) = 7*A138148(n) + 10^n.
For n == 1 (mod 3), 3 | a(n) and a(n)/3 = 259*(10^(2n+1)-1)/999 - 2*10^n;
for n == 3 or 5 (mod 6), 13 | a(n) and a(n)/13 = (A(n)-1)*10^n + B(n), where A(n) (resp. B(n)) are the n leftmost (resp. rightmost) digits of 59829*(10^(ceiling(n/6)*6)-1)/(10^6-1).
From Colin Barker, Feb 07 2020: (Start)
G.f.: (1 + 606*x - 1300*x^2) / ((1 - x)*(1 - 10*x)*(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n>2.
(End)
E.g.f.: (1/9)*exp(x)*(70*exp(99*x) - 54*exp(9*x) - 7). - Stefano Spezia, Feb 08 2020

A332179 a(n) = 7*(10^(2n+1)-1)/9 + 2*10^n.

Original entry on oeis.org

9, 797, 77977, 7779777, 777797777, 77777977777, 7777779777777, 777777797777777, 77777777977777777, 7777777779777777777, 777777777797777777777, 77777777777977777777777, 7777777777779777777777777, 777777777777797777777777777, 77777777777777977777777777777, 7777777777777779777777777777777
Offset: 0

Views

Author

M. F. Hasler, Feb 08 2020

Keywords

Comments

See A183183 = {1, 2, 8, 19, 20, 212, 280, ...} for the indices of primes.

Crossrefs

Cf. A138148 (cyclops numbers with binary digits only).
Cf. (A077796-1)/2 = A183183: indices of primes.
Cf. A002275 (repunits R_n = [10^n/9]), A002281 (7*R_n), A011557 (10^n).
Cf. A332171 .. A332178 (variants with different middle digit 1, ..., 8).

Programs

  • Maple
    A332179 := n -> 7*(10^(n*2+1)-1)/9 + 2*10^n;
  • Mathematica
    Array[7 (10^(2 # + 1) - 1)/9 + 2*10^# &, 15, 0]
  • PARI
    apply( {A332179(n)=10^(n*2+1)\9*7+2*10^n}, [0..15])
    
  • Python
    def A332179(n): return 10**(n*2+1)//9*7+2*10^n

Formula

a(n) = 7*A138148(n) + 9*10^n.
G.f.: (9 - 202*x - 500*x^2)/((1 - x)*(1 - 10*x)*(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A332191 a(n) = 10^(2n+1) - 1 - 8*10^n.

Original entry on oeis.org

1, 919, 99199, 9991999, 999919999, 99999199999, 9999991999999, 999999919999999, 99999999199999999, 9999999991999999999, 999999999919999999999, 99999999999199999999999, 9999999999991999999999999, 999999999999919999999999999, 99999999999999199999999999999, 9999999999999991999999999999999
Offset: 0

Views

Author

M. F. Hasler, Feb 08 2020

Keywords

Comments

See A183184 = {1, 5, 13, 43, 169, 181, ...} for the indices of primes.

Crossrefs

Cf. (A077776-1)/2 = A183184: indices of primes.
Cf. A002275 (repunits R_n = (10^n-1)/9), A002283 (9*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits only), A002113 (palindromes).
Cf. A332121 .. A332181 (variants with different repeated digit 2, ..., 8).
Cf. A332190 .. A332197, A181965 (variants with different middle digit 0, ..., 8).

Programs

  • Maple
    A332191 := n -> 10^(n*2+1)-1-8*10^n;
  • Mathematica
    Array[ 10^(2 # + 1)-1-8*10^# &, 15, 0]
  • PARI
    apply( {A332191(n)=10^(n*2+1)-1-8*10^n}, [0..15])
    
  • Python
    def A332191(n): return 10**(n*2+1)-1-8*10^n

Formula

a(n) = 9*A138148(n) + 10^n.
G.f.: (1 + 808*x - 1700*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A332178 a(n) = 7*(10^(2n+1)-1)/9 + 10^n.

Original entry on oeis.org

8, 787, 77877, 7778777, 777787777, 77777877777, 7777778777777, 777777787777777, 77777777877777777, 7777777778777777777, 777777777787777777777, 77777777777877777777777, 7777777777778777777777777, 777777777777787777777777777, 77777777777777877777777777777, 7777777777777778777777777777777
Offset: 0

Views

Author

M. F. Hasler, Feb 08 2020

Keywords

Comments

See A183182 = {1, 3, 39, 54, 168, 240, ...} for the indices of primes.

Crossrefs

Cf. A138148 (cyclops numbers with binary digits only).
Cf. (A077793-1)/2 = A183182: indices of primes.
Cf. A002275 (repunits R_n = (10^n-1)/9), A002281 (7*R_n), A011557 (10^n).
Cf. A332171 .. A332179 (variants with different middle digit 1, ..., 9).

Programs

  • Maple
    A332178 := n -> 7*(10^(n*2+1)-1)/9 + 10^n;
  • Mathematica
    Array[7 (10^(2 # + 1) - 1)/9 + 10^# &, 15, 0]
  • PARI
    apply( {A332178(n)=10^(n*2+1)\9*7+10^n}, [0..15])
    
  • Python
    def A332178(n): return 10**(n*2+1)//9*7+10^n

Formula

a(n) = 7*A138148(n) + 8*10^n.
G.f.: (8 - 101*x - 600*x^2)/((1 - x)*(1 - 10*x)*(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
Previous Showing 21-30 of 102 results. Next