cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 252 results. Next

A106889 Primes of the form 2x^2 + 5y^2.

Original entry on oeis.org

2, 5, 7, 13, 23, 37, 47, 53, 103, 127, 157, 167, 173, 197, 223, 263, 277, 293, 317, 367, 373, 383, 397, 463, 487, 503, 557, 607, 613, 647, 653, 677, 727, 733, 743, 757, 773, 797, 823, 853, 863, 877, 887, 967, 983, 997, 1013, 1063, 1087, 1093, 1103, 1117
Offset: 1

Views

Author

T. D. Noe, May 09 2005

Keywords

Comments

Discriminant = -40.

Crossrefs

Cf. A139827. Primes in A020674.

Programs

  • Mathematica
    QuadPrimes2[2, 0, 5, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List(),w,t); for(x=0, sqrtint(lim\2), w=2*x^2; for(y=0, sqrtint((lim-w)\5), if(isprime(t=w+5*y^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 09 2017

Formula

The primes are congruent to {2, 5, 7, 13, 23, 37} (mod 40). - T. D. Noe, May 02 2008

A107169 Primes of the form 3x^2 + 20y^2.

Original entry on oeis.org

3, 23, 47, 83, 107, 167, 227, 263, 347, 383, 443, 467, 503, 563, 587, 647, 683, 743, 827, 863, 887, 947, 983, 1103, 1163, 1187, 1223, 1283, 1307, 1367, 1427, 1487, 1523, 1583, 1607, 1667, 1787, 1823, 1847, 1907, 2003, 2027, 2063, 2087, 2207
Offset: 1

Views

Author

T. D. Noe, May 13 2005

Keywords

Comments

Discriminant = -240. See A107132 for more information.
Except for 3, also primes of the forms 2x^2 + 2xy + 23y^2 (A139831) and 8x^2 + 4xy + 23y^2. See A140633. - T. D. Noe, May 19 2008

Crossrefs

Cf. A139827.

Programs

  • Magma
    [3] cat [p: p in PrimesUpTo(3000) | p mod 60 in [23, 47]]; // Vincenzo Librandi, Jul 25 2012
    
  • Mathematica
    QuadPrimes2[3, 0, 20, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List([3]),t); forprime(p=23,lim, t=p%60; if(t==23||t==47, listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Feb 10 2017

Formula

Except for 3, the primes are congruent to {23, 47} (mod 60). - T. D. Noe, May 02 2008

A139855 Primes of the form 4x^2+4xy+31y^2.

Original entry on oeis.org

31, 79, 151, 199, 271, 439, 631, 751, 919, 991, 1039, 1231, 1279, 1399, 1471, 1759, 1831, 1879, 1951, 1999, 2239, 2311, 2551, 2671, 2719, 2791, 3079, 3271, 3319, 3391, 3511, 3559, 3631, 3919, 4111, 4159, 4231, 4519, 4591, 4639, 4759, 4831
Offset: 1

Views

Author

T. D. Noe, May 02 2008

Keywords

Comments

Discriminant = -480. See A139827 for more information.
Also primes of the form 15x^2+16y^2, which has discriminant = -960. - T. D. Noe, May 07 2008
Also primes of the form 16x^2+8xy+31y^2, which has discriminant = -1920. See A140633. - T. D. Noe, May 19 2008

Programs

  • Magma
    [ p: p in PrimesUpTo(6000) | p mod 120 in {31, 79}]; // Vincenzo Librandi, Jul 29 2012
  • Mathematica
    QuadPrimes2[4, -4, 31, 10000] (* see A106856 *)

Formula

The primes are congruent to {31, 79} (mod 120).

A139857 Primes of the form 8x^2 + 15y^2.

Original entry on oeis.org

23, 47, 167, 263, 383, 503, 647, 743, 863, 887, 983, 1103, 1223, 1367, 1487, 1583, 1607, 1823, 1847, 2063, 2087, 2207, 2423, 2447, 2543, 2663, 2687, 2903, 2927, 3023, 3167, 3407, 3527, 3623, 3767, 3863, 4007, 4127, 4463, 4583, 4703, 4943
Offset: 1

Views

Author

T. D. Noe, May 02 2008

Keywords

Comments

Discriminant= = -480. See A139827 for more information.
Also primes of the form 12x^2 + 12xy + 23y^2, which has discriminant = -960. - T. D. Noe, May 07 2008
Also primes of the forms 23x^2 + 22xy + 47y^2 and 23x^2 + 8xy + 32y^2. See A140633. - T. D. Noe, May 19 2008

Programs

  • Magma
    [ p: p in PrimesUpTo(6000) | p mod 120 in {23, 47}]; // Vincenzo Librandi, Jul 29 2012
    
  • Mathematica
    QuadPrimes2[8, 0, 15, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List(),w,t); for(x=1, sqrtint(lim\8), w=8*x^2; for(y=1, sqrtint((lim-w)\15), if(isprime(t=w+15*y^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 22 2017

Formula

The primes are congruent to {23, 47} (mod 120).

A139858 Primes of the form 8x^2+8xy+17y^2.

Original entry on oeis.org

17, 113, 137, 233, 257, 353, 593, 617, 857, 953, 977, 1097, 1193, 1217, 1433, 1553, 1697, 1913, 2153, 2273, 2297, 2393, 2417, 2633, 2657, 2753, 2777, 2897, 3137, 3257, 3593, 3617, 3833, 4073, 4217, 4337, 4457, 4673, 4793, 4817, 4937, 5153
Offset: 1

Views

Author

T. D. Noe, May 02 2008

Keywords

Comments

Discriminant=-480. See A139827 for more information.
Also primes of the form 17x^2+14xy+17y^2, which has discriminant=-960. - T. D. Noe, May 07 2008
Also primes of the forms 17x^2+16xy+32y^2 and 17x^2+6xy+57y^2. See A140633. - T. D. Noe, May 19 2008

Programs

  • Magma
    [ p: p in PrimesUpTo(6000) | p mod 120 in {17, 113}]; // Vincenzo Librandi, Jul 29 2012
  • Mathematica
    QuadPrimes2[8, -8, 17, 10000] (* see A106856 *)

Formula

The primes are congruent to {17, 113} (mod 120).

A007639 Primes of form 2n^2 - 2n + 19.

Original entry on oeis.org

19, 23, 31, 43, 59, 79, 103, 131, 163, 199, 239, 283, 331, 383, 439, 499, 563, 631, 859, 1031, 1123, 1319, 1423, 1531, 1759, 1879, 2003, 2131, 2399, 2539, 2683, 3299, 3463, 3631, 3803, 4159, 4723, 4919, 5119, 5323, 5531, 5743, 6863, 7583, 8599
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A139827.

Programs

  • Magma
    [a: n in [1..60] | IsPrime(a) where a is 2*n^2-2*n+19]; // Vincenzo Librandi, Mar 20 2013
  • Mathematica
    Select[Table[2n^2-2n+19,{n,90}],PrimeQ] (* Harvey P. Dale, Dec 19 2011 *)

Formula

The primes are congruent to {2, 15, 19, 23, 31, 35, 39, 43, 51, 55, 59, 79, 87, 91, 103, 119, 131, 135, 143} (mod 148). - T. D. Noe, May 02 2008

A107135 Primes of the form 5x^2 + 6y^2.

Original entry on oeis.org

5, 11, 29, 59, 101, 131, 149, 179, 251, 269, 389, 419, 461, 491, 509, 659, 701, 821, 941, 971, 1019, 1061, 1091, 1109, 1181, 1229, 1259, 1301, 1451, 1499, 1571, 1619, 1709, 1811, 1901, 1931, 1949, 1979, 2069, 2099, 2141, 2309, 2339, 2381, 2411
Offset: 1

Views

Author

T. D. Noe, May 13 2005

Keywords

Comments

Discriminant = -120. See A107132 for more information.
Except for 5, also primes of the form 11x^2 + 4xy + 14y^2. See A140633. - T. D. Noe, May 19 2008

Crossrefs

Cf. A139827.

Programs

  • Magma
    [ p: p in PrimesUpTo(3000) | p mod 120 in {5, 11, 29, 59, 101} ]; // Vincenzo Librandi, Jul 23 2012
    
  • Mathematica
    QuadPrimes2[5, 0, 6, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List([5]),s=[11,29,59,101]); forprime(p=11,lim, if(setsearch(s,p%120), listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Feb 09 2017

Formula

The primes are congruent to {5, 11, 29, 59, 101} (mod 120). - T. D. Noe, May 02 2008

A107144 Primes of the form 5x^2 + 8y^2.

Original entry on oeis.org

5, 13, 37, 53, 157, 173, 197, 277, 293, 317, 373, 397, 557, 613, 653, 677, 733, 757, 773, 797, 853, 877, 997, 1013, 1093, 1117, 1213, 1237, 1277, 1373, 1453, 1493, 1597, 1613, 1637, 1693, 1733, 1877, 1933, 1973, 1997, 2053, 2213, 2237, 2293
Offset: 1

Views

Author

T. D. Noe, May 13 2005

Keywords

Comments

Discriminant = -160. See A107132 for more information.
Except for 5, also primes of the form 13x^2 + 8xy + 32y^2. See A140633. - T. D. Noe, May 19 2008

Crossrefs

Cf. A139827.

Programs

  • Magma
    [5] cat [ p: p in PrimesUpTo(3000) | p mod 40 in {13, 37} ]; // Vincenzo Librandi, Jul 24 2012
    
  • Mathematica
    QuadPrimes2[5, 0, 8, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List([5]),t); forprime(p=13,lim, t=p%40; if(t==13||t==37, listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Feb 09 2017

Formula

Except for 5, the primes are congruent to {13, 37} (mod 40). - T. D. Noe, May 02 2008

A107151 Primes of the form 5x^2 + 9y^2.

Original entry on oeis.org

5, 29, 41, 89, 101, 149, 269, 281, 389, 401, 449, 461, 509, 521, 569, 641, 701, 761, 809, 821, 881, 929, 941, 1049, 1061, 1109, 1181, 1229, 1289, 1301, 1361, 1409, 1481, 1601, 1709, 1721, 1889, 1901, 1949, 2069, 2081, 2129, 2141, 2309, 2381
Offset: 1

Views

Author

T. D. Noe, May 13 2005

Keywords

Comments

Discriminant = -180. See A107132 for more information.
Except for 5, also primes of the form 9x^2 + 6xy + 26y^2. See A140633. - T. D. Noe, May 19 2008

Crossrefs

Cf. A139827.

Programs

  • Magma
    [5] cat [ p: p in PrimesUpTo(3000) | p mod 60 in {29, 41 } ]; // Vincenzo Librandi, Jul 24 2012
    
  • Mathematica
    QuadPrimes2[5, 0, 9, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List([5]),t); forprime(p=29,lim, t=p%60; if(t==29||t==41, listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Feb 09 2017

Formula

Except for 5, the primes are congruent to {29, 41} (mod 60). - T. D. Noe, May 02 2008

A107167 Primes of the form 5x^2 + 12y^2.

Original entry on oeis.org

5, 17, 53, 113, 137, 173, 197, 233, 257, 293, 317, 353, 557, 593, 617, 653, 677, 773, 797, 857, 953, 977, 1013, 1097, 1193, 1217, 1277, 1373, 1433, 1493, 1553, 1613, 1637, 1697, 1733, 1877, 1913, 1973, 1997, 2153, 2213, 2237, 2273, 2297, 2333
Offset: 1

Views

Author

T. D. Noe, May 13 2005

Keywords

Comments

Discriminant = -240. See A107132 for more information.

Crossrefs

Cf. A139827.

Programs

  • Magma
    [5] cat [p: p in PrimesUpTo(3000) | p mod 60 in [17, 53]]; // Vincenzo Librandi, Jul 25 2012
    
  • Mathematica
    QuadPrimes2[5, 0, 12, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List([5]),t); forprime(p=17,lim, t=p%60; if(t==17||t==53, listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Feb 10 2017

Formula

Except for 5, the primes are congruent to {17, 53} (mod 60). - T. D. Noe, May 02 2008
Previous Showing 11-20 of 252 results. Next