cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 43 results. Next

A066885 a(n) = (prime(n)^2 + 1)/2.

Original entry on oeis.org

5, 13, 25, 61, 85, 145, 181, 265, 421, 481, 685, 841, 925, 1105, 1405, 1741, 1861, 2245, 2521, 2665, 3121, 3445, 3961, 4705, 5101, 5305, 5725, 5941, 6385, 8065, 8581, 9385, 9661, 11101, 11401, 12325, 13285, 13945, 14965, 16021, 16381, 18241, 18625
Offset: 2

Views

Author

Enoch Haga, Jan 22 2002

Keywords

Comments

a(n) is the average of the numbers from 1 to prime(n)^2. It's also the average of the primes in a prime(n) X prime(n) example of Haga's conjecture (see link below).
If a(n) is a square c^2, then prime(n) is an NSW prime (A088165) and a prime RMS number (A140480). - Ctibor O. Zizka, Aug 26 2008
The sequence starts with a(2) = (3^2 + 1)/2 = 5 since a(1) would be (2^2 + 1)/2 = 5/2. - Michael B. Porter, Dec 14 2009

Crossrefs

Cf. A084921.
Partial sums of A124434.

Programs

Formula

a(n) = 1 + A084921(n). - R. J. Mathar, Sep 30 2011
a(n) mod 4 = 1. - Altug Alkan, Apr 08 2016
Product_{n>=2} (1 - 1/a(n)) = 2/3. - Amiram Eldar, Jun 03 2022

Extensions

Edited by Dean Hickerson, Jun 08 2002

A145551 Numbers k such that product of divisors of k / sum of divisors of k is an integer.

Original entry on oeis.org

1, 6, 28, 30, 66, 84, 102, 120, 210, 270, 318, 330, 364, 420, 462, 496, 510, 546, 570, 642, 672, 690, 714, 840, 868, 870, 924, 930, 966, 1080, 1092, 1122, 1320, 1410, 1428, 1488, 1518, 1590, 1638, 1722, 1770, 1782, 1890, 1932, 2040, 2130, 2226, 2280, 2310
Offset: 1

Views

Author

Ctibor O. Zizka, Oct 13 2008

Keywords

Comments

Numbers k such that A007955(k)/A000203(k) is an integer
Numbers k such that k^sigma_0(k) is a multiple of sigma_1(k)^2. - Chai Wah Wu, Mar 09 2016

Crossrefs

Programs

  • Maple
    A007955 := proc(n) local dvs,d ; dvs := numtheory[divisors](n) ; mul(d,d=dvs) ; end: A000203 := proc(n) local dvs,d ; dvs := numtheory[divisors](n) ; add(d,d=dvs) ; end: isA145551 := proc(n) RETURN(A007955(n) mod A000203(n) = 0) ; end: for n from 1 to 10000 do if isA145551(n) then printf("%d,",n) ; fi; od: # R. J. Mathar, Oct 14 2008
  • Mathematica
    spQ[n_]:=Module[{ds=Divisors[n]},IntegerQ[(Times@@ds)/Total[ds]]]; Select[ Range[2500],spQ] (* Harvey P. Dale, Jun 26 2012 *)
    Select[Range[2500], Divisible[#^(DivisorSigma[0, #]/2), DivisorSigma[1, #]] &] (* Amiram Eldar, Nov 08 2020 *)
  • Python
    from sympy import divisor_sigma
    A145551_list = [n for n in range(1,10**3) if not n**divisor_sigma(n,0) % divisor_sigma(n,1)**2] # Chai Wah Wu, Mar 09 2016

Extensions

90, 96, 108, 126, 132, 140 removed, extended by R. J. Mathar, Oct 14 2008

A144695 Numbers n such that sigma_1(n)/sigma_0(n) = c^2, c an integer.

Original entry on oeis.org

1, 7, 17, 22, 30, 31, 71, 94, 97, 115, 119, 127, 138, 154, 164, 165, 199, 210, 214, 217, 241, 260, 265, 318, 337, 343, 374, 382, 449, 497, 510, 513, 517, 527, 577, 647, 658, 668, 679, 682, 705, 745, 759, 805, 862, 881, 889, 894, 930, 966, 967, 996, 1102, 1125
Offset: 1

Views

Author

Ctibor O. Zizka, Sep 19 2008

Keywords

Comments

A000203(n)/A000005(n) = c^2. Generalized sigma-sequences are sequences of numbers n for which sigma_r(n)/sigma_s(n) = c^t . Sigma_i(n) denotes sum of i-th powers of divisors of n; c,r,s,t positive integers. This sequence has r=1,s=0,t=2, sequence A003601 has r=1,s=0,t=1, sequence {1,21,53,85,102,110,127,217,431,....} has r=1,s=0,t=3, sequence A020487 has r=2,s=1,t=1, sequence A020486 has r=2,s=0,t=1, sequence A140480 has r=2,s=0,t=2.

Crossrefs

Programs

  • Maple
    A000005 := proc(n) numtheory[tau](n) ; end: A000203 := proc(n) numtheory[sigma](n) ; end: isA144695 := proc(n) local s ; s := A000005(n) ; if s <> 0 then issqr(A000203(n)/s) ; else false ; fi; end: for n from 1 to 5000 do if isA144695(n) then printf("%d,",n) ; fi; od: # R. J. Mathar, Sep 20 2008
  • Mathematica
    Select[Range[1125], IntegerQ @ Sqrt[DivisorSigma[1, #]/DivisorSigma[0, #]] &] (* Amiram Eldar, Nov 20 2019 *)
  • PARI
    isok(m) = my(f=factor(m), q=sigma(f)/numdiv(f)); issquare(q) && !frac(q); \\ Michel Marcus, Mar 15 2022

Extensions

More terms from R. J. Mathar, Sep 20 2008

A141391 a(n) is the smallest unused number such that the RMS (Root Mean Square) of a(1) through a(n) is an integer.

Original entry on oeis.org

1, 7, 5, 11, 28, 14, 182, 70, 2, 66, 1518, 462, 1540, 616, 296, 600, 1950, 750, 10, 730, 2336, 876, 2436, 996, 3154, 1162, 5698, 210, 1554, 3234, 1638, 5382, 1872, 23088, 4368, 5934, 201, 4359, 77991, 7021, 13090, 4270, 12950, 74, 12802, 76466, 16954
Offset: 1

Views

Author

Andrew Weimholt, Jun 29 2008

Keywords

Comments

Actual RMS values are given by A141392

Examples

			a(4) = 11. Sqrt(mean(1^2, 7^2, 5^2, k^2)) is an integer for k in {5,11,37}. We have already used 5 for a(3), so 11 is the smallest value available for a(4).
		

Crossrefs

Programs

  • Mathematica
    s={1};Do[i=1;Until[!MemberQ[s,i]&&IntegerQ[RootMeanSquare[Append[s,i]]],i++];AppendTo[s,i],{n,46}];s (* James C. McMahon, Jul 24 2025 *)

A141813 Primitive RMS numbers: RMS numbers which are not the product of two smaller RMS numbers.

Original entry on oeis.org

1, 7, 41, 239, 3055, 6665, 9545, 9855, 26095, 34697, 155287, 380511, 421655, 627215, 814463, 823537, 1166399, 1204281, 1256489, 1289441, 1815073, 2265353, 2544697, 2627343, 3132935, 3188809, 3762639, 4647985, 4730879, 4963127, 4995569, 5054015, 5143945
Offset: 1

Views

Author

Andrew Weimholt, Jul 07 2008

Keywords

Comments

RMS numbers (see A140480) are numbers such that the RMS (Root Mean Square) of their divisors is an integer. If A and B both appear in A140480 and GCD(A,B)=1, then A*B is also in A140480. This sequence contains only those RMS numbers that are not a product of smaller RMS numbers.

Examples

			The RMS Number 287 is not in the sequence because 287=7*41 and both 7 and 41 are RMS numbers.
		

Crossrefs

A141814 RMS values of the Primitive RMS numbers: a(n) is the Root Mean Square of the divisors of A141813(n).

Original entry on oeis.org

1, 5, 29, 169, 1105, 2405, 3445, 2665, 9425, 12325, 55205, 101065, 124501, 160225, 204425, 239425, 292825, 226525, 446165, 456025, 456025, 801125, 637325, 493025, 801125, 801125, 706225, 1185665, 1185665, 1759925, 1770305, 1291225, 1313845, 1185665, 1743625
Offset: 1

Views

Author

Andrew Weimholt, Jul 07 2008, Jul 09 2008

Keywords

Examples

			a(5)=1105, because A141813(5)=3055, with divisors 1,5,13,47,65,235,611,3055 and RMS(1,5,13,47,65,235,611,3055) = 1105.
		

Crossrefs

A153111 Solutions of the Pell-like equation 1 + 6*A*A = 7*B*B, with A, B integers.

Original entry on oeis.org

1, 25, 649, 16849, 437425, 11356201, 294823801, 7654062625, 198710804449, 5158826853049, 133930787374825, 3477041644892401, 90269151979827601, 2343520909830625225, 60841274503616428249, 1579529616184196509249, 41006928746285492812225
Offset: 1

Views

Author

Ctibor O. Zizka, Dec 18 2008

Keywords

Comments

B is of the form B(i) = 26*B(i-1) - B(i-2) for B(0) = 1, B(1) = 25 (this sequence).
A is of the form A(i) = 26*A(i-1) - A(i-2) for A(0) = 1, A(1) = 27.
In general a Pell-like equation of the form 1 + X*A*A = (X + 1)*B*B has the solution A(i) = (4*X + 2)*A(i-1) - A(i-2), for A(0) = 1 and A(1) = (4*X + 3), and B(i) = (4*X + 2)*B(i-1) - B(i-2) for B(0) = 1 and B(1) = (4*X + 1).
Examples in the OEIS:
X = 1 gives A002315 for A(i) and A001653 for B(i);
X = 2 gives A054320 for A(i) and A072256 for B(i);
X = 3 gives A028230 for A(i) and A001570 for B(i);
X = 4 gives A049629 for A(i) and A007805 for B(i);
X = 5 gives A133283 for A(i) and A157014 for B(i);
X = 6 gives A157461 for A(i) and this sequence for B(i).
Positive values of x (or y) satisfying x^2 - 26*x*y + y^2 + 24 = 0. - Colin Barker, Feb 20 2014

Crossrefs

Cf. similar sequences listed in A238379.

Programs

  • Magma
    I:=[1,25]; [n le 2 select I[n] else 26*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Feb 22 2014
  • Mathematica
    CoefficientList[Series[(1 - x)/(x^2 - 26 x + 1), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 22 2014 *)
    LinearRecurrence[{26, -1}, {1, 25}, 20] (* Jean-François Alcover, Jan 07 2019 *)
  • PARI
    Vec(-x*(x-1)/(x^2-26*x+1) + O(x^100)) \\ Colin Barker, Feb 20 2014
    

Formula

a(n) = 26*a(n-1) - a(n-2). - Colin Barker, Feb 20 2014
G.f.: -x*(x - 1) / (x^2 - 26*x + 1). - Colin Barker, Feb 20 2014
a(n) = (1/14)*(7 - sqrt(42))*(1 + (13 + 2*sqrt(42))^(2*n - 1))/(13 + 2*sqrt(42))^(n - 1). - Bruno Berselli, Feb 25 2014
E.g.f.: (1/7)*(7*cosh(2*sqrt(42)*x) - sqrt(42)*sinh(2*sqrt(42)*x))*exp(13*x) - 1. - Franck Maminirina Ramaharo, Jan 07 2019

Extensions

More terms from Philippe Deléham, Sep 19 2009; corrected by N. J. A. Sloane, Sep 20 2009
Additional term from Colin Barker, Feb 20 2014

A141392 a(n) = RMS( A141391(1) through A141391(n) ).

Original entry on oeis.org

1, 5, 5, 7, 14, 14, 70, 70, 66, 66, 462, 462, 616, 616, 600, 600, 750, 750, 730, 730, 876, 876, 996, 996, 1162, 1162, 1582, 1554, 1554, 1638, 1638, 1872, 1872, 4368, 4368, 4419, 4359, 4359, 13209, 13090, 13090, 12950, 12950, 12802, 12802, 16954, 16954
Offset: 1

Views

Author

Andrew Weimholt, Jun 29 2008

Keywords

Examples

			a(4) = 7 because first 4 terms of A141391 are 1,7,5,11 and sqrt(mean(1^2, 7^2, 5^2, 11^2)) = 7.
		

Crossrefs

Programs

  • Mathematica
    lim=46;a141391={1};Do[i=1;Until[!MemberQ[a141391,i]&&IntegerQ[RootMeanSquare[Append[a141391,i]]],i++];AppendTo[a141391,i],{n,lim}];a[n_]:=RootMeanSquare[a141391[[1;;n]]];Array[a,lim] (* James C. McMahon, Jul 24 2025 *)

A141393 a(n) is the smallest number, larger than the previous, such that the RMS (Root Mean Square) of a(0) through a(n) is an integer.

Original entry on oeis.org

1, 7, 25, 33, 84, 294, 462, 750, 1155, 1705, 2431, 3017, 18130, 19684, 22052, 28996, 36907, 45925, 61957, 71309, 168889, 471799, 9998261, 11975939, 21577709, 29764925, 853783375, 1388314375, 1438304875, 2710683875, 2741707205, 62802867395, 72342543455
Offset: 0

Views

Author

Andrew Weimholt, Jun 29 2008

Keywords

Comments

Actual RMS values are given by A141394.

Crossrefs

Extensions

a(22)-a(32) from Giovanni Resta, Jan 22 2014

A141394 a(n) = RMS( A141393(0) through A141393(n) ).

Original entry on oeis.org

1, 5, 15, 21, 42, 126, 210, 330, 495, 715, 1001, 1295, 5180, 7252, 9028, 11356, 14195, 17535, 22211, 26887, 45241, 109871, 2087549, 3186259, 5326355, 7832875, 164490375, 308102375, 403718875, 634415375, 794973005, 11129622070, 16694433105, 22566503645
Offset: 0

Views

Author

Andrew Weimholt, Jun 29 2008

Keywords

Examples

			a(3) = 21 because first 4 terms of A141393 are 1,7,25,33 and sqrt(mean(1^2, 7^2, 25^2, 33^2)) = 21.
		

Crossrefs

Extensions

a(22)-a(33) from Giovanni Resta, Jan 22 2014
Previous Showing 11-20 of 43 results. Next