A274552
Numbers k such that sigma(k) == 0 (mod k-3).
Original entry on oeis.org
2, 4, 5, 6, 7, 8, 15, 52, 315, 592, 1155, 2102272, 815634435
Offset: 1
sigma(4) mod (4-3) = 7 mod 1 = 0.
Cf.
A000203,
A067702,
A087485,
A274551,
A274553,
A274554,
A274556,
A274557,
A274558,
A274559,
A274560,
A274561,
A274562,
A274563,
A274564,
A274565,
A274566.
-
[n: n in [1..2*10^6] | n ne 3 and SumOfDivisors(n) mod (n-3) eq 0 ]; // Vincenzo Librandi, Jul 02 2016
-
k = -3; Select[Range[1, 10^6], # + k != 0 && Mod[DivisorSigma[1, #], # + k] == 0 &] (* Michael De Vlieger, Jul 01 2016 *)
-
is(n) = if(n == 3, return(0), Mod(sigma(n), n-3)==0) \\ Felix Fröhlich, Jul 02 2016
A274558
Numbers k such that sigma(k) == 0 (mod k-6).
Original entry on oeis.org
5, 7, 13, 14, 20, 30, 45, 76, 630, 688, 2310, 8896, 133888, 537051136, 1631268870, 35184418226176, 144115191028645888, 2305843021024854016
Offset: 1
sigma(7) mod (7-6) = 8 mod 1 = 0.
Cf.
A000203,
A045770,
A067702,
A088833,
A141548,
A181598,
A191363,
A274551,
A274552,
A274553,
A274554,
A274556,
A274557,
A274559,
A274560,
A274561,
A274562,
A274563,
A274564,
A274565,
A274566.
-
Select[Range[7, 10^6], # - 6 != 0 && Mod[DivisorSigma[1, #], # - 6] == 0 &] (* Michael De Vlieger, Jul 05 2016 *)
A087485
Odd numbers n such that 2n - sigma(n) = 6.
Original entry on oeis.org
7, 15, 315, 1155, 815634435
Offset: 1
15 is in the sequence because 2*15-sigma(15)=6.
-
Do[If[OddQ[n]&&2n-DivisorSigma[1, n]==6, Print[n]], {n, 2*10^9}]
-
is(n)=bittest(n,0)&&sigma(n)+6==2*n \\ M. F. Hasler, Apr 12 2015
A256258
Triangle read by rows in which the row lengths are the terms of A011782 and row n lists the terms of A016969 except for the right border which gives the positive terms of A000225.
Original entry on oeis.org
1, 3, 5, 7, 5, 11, 17, 15, 5, 11, 17, 23, 29, 35, 41, 31, 5, 11, 17, 23, 29, 35, 41, 47, 53, 59, 65, 71, 77, 83, 89, 63, 5, 11, 17, 23, 29, 35, 41, 47, 53, 59, 65, 71, 77, 83, 89, 95, 101, 107, 113, 119, 125, 131, 137, 143, 149, 155, 161, 167, 173, 179, 185, 127, 5, 11, 17, 23, 29, 35, 41, 47, 53, 59, 65, 71, 77, 83, 89, 95, 101, 107, 113, 119, 125, 131, 137
Offset: 1
Written as an irregular triangle in which the row lengths are the terms of A011782, the sequence begins:
1;
3;
5,7;
5,11,17,15;
5,11,17,23,29,35,41,31;
5,11,17,23,29,35,41,47,53,59,65,71,77,83,89,63;
5,11,17,23,29,35,41,47,53,59,65,71,77,83,89,95,101,107,113,119,125,131,137,143,149,155,161,167,173,179,185,127;
...
Illustration of initial terms in the fourth quadrant of the square grid:
------------------------------------------------------------------------
n a(n) Compact diagram
------------------------------------------------------------------------
. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
1 1 |_| | | |_ _ | |_ _ _ _ _ _ | |
2 3 |_ _| | |_ | | |_ _ _ _ _ | | |
3 5 |_ _ _| | | | | |_ _ _ _ | | | |
4 7 |_ _ _ _| | | | |_ _ _ | | | | |
5 5 | | |_ _ _| | | |_ _ | | | | | |
6 11 | |_ _ _ _ _| | |_ | | | | | | |
7 17 |_ _ _ _ _ _ _| | | | | | | | | |
8 15 |_ _ _ _ _ _ _ _| | | | | | | | |
9 5 | | | | | | |_ _ _| | | | | | | |
10 11 | | | | | |_ _ _ _ _| | | | | | |
11 17 | | | | |_ _ _ _ _ _ _| | | | | |
12 23 | | | |_ _ _ _ _ _ _ _ _| | | | |
13 29 | | |_ _ _ _ _ _ _ _ _ _ _| | | |
14 35 | |_ _ _ _ _ _ _ _ _ _ _ _ _| | |
15 41 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
16 31 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
.
a(n) is also the number of cells in the n-th region of the diagram.
It appears that A241717 can be represented by a similar diagram.
Cf.
A000225,
A000302,
A002001,
A011782,
A016969,
A141548,
A241717,
A256260,
A256261,
A256263,
A256264.
-
Nest[Join[#, Range[Length[#] - 1]*6 - 1, {2 #[[-1]] + 1}] &, {1}, 7] (* Ivan Neretin, Feb 14 2017 *)
A275997
Numbers k whose deficiency is 64: 2k - sigma(k) = 64.
Original entry on oeis.org
134, 284, 410, 632, 1292, 1628, 4064, 9752, 12224, 22712, 66992, 72944, 403988, 556544, 2161664, 2330528, 8517632, 13228352, 14563832, 15422912, 20732792, 89472632, 134733824, 150511232, 283551872, 537903104, 731670272, 915473696, 1846850576, 2149548032, 2159587616
Offset: 1
a(1) = 134, since 2*134 - sigma(134) = 268 - 204 = 64.
Deficiency k:
A191363 (k=2),
A125246 (k=4),
A141548 (k=6),
A125247 (k=8),
A101223 (k=10),
A141549 (k=12),
A141550 (k=14),
A125248 (k=16),
A223608 (k=18),
A223607 (k=20),
A223606 (k=22),
A385255(k=24),
A275702 (k=26),
A387352 (k=32).
Abundance k:
A088831 (k=2),
A088832 (k=4),
A087167 (k=6),
A088833 (k=8),
A223609 (k=10),
A141545 (k=12),
A141546 (k=14),
A141547 (k=16),
A223610 (k=18),
A223611 (k=20),
A223612 (k=22),
A223613 (k=24),
A275701 (k=26),
A175989 (k=32),
A275996 (k=64),
A292626 (k=128).
A292626
Numbers k whose abundance is 128: sigma(k) - 2*k = 128.
Original entry on oeis.org
860, 5336, 6536, 9656, 16256, 55796, 70864, 98048, 361556, 776096, 2227616, 4145216, 4498136, 4632896, 8124416, 13086016, 34869056, 38546576, 150094976, 172960856, 196066256, 962085536, 1080008576, 1733780336, 1844788112, 2143256576, 2531343872, 2986104064, 9677743616, 11276687456, 17104503968, 20680182272, 21568135616
Offset: 1
Deficiency k:
A191363 (k=2),
A125246 (k=4),
A141548 (k=6),
A125247 (k=8),
A101223 (k=10),
A141549 (k=12),
A141550 (k=14),
A125248 (k=16),
A223608 (k=18),
A223607 (k=20),
A223606 (k=22),
A385255(k=24),
A275702 (k=26),
A387352 (k=32),
A275997 (k=64).
Abundance k:
A088831 (k=2),
A088832 (k=4),
A087167 (k=6),
A088833 (k=8),
A223609 (k=10),
A141545 (k=12),
A141546 (k=14),
A141547 (k=16),
A223610 (k=18),
A223611 (k=20),
A223612 (k=22),
A223613 (k=24),
A275701 (k=26),
A175989 (k=32),
A275996 (k=64).
-
fQ[n_] := DivisorSigma[1, n] == 2 n + 128; Select[ Range@ 10^8, fQ] (* Robert G. Wilson v, Nov 19 2017 *)
-
isok(n) = sigma(n) - 2*n == 128; \\ Michel Marcus, Sep 20 2017
Missing terms a(25), a(27)-a(28), a(31)-a(32) inserted and terms a(34) onward added by
Max Alekseyev, Aug 30 2025
A256873
a(n) = 2^(n-1)*(2^n+5).
Original entry on oeis.org
3, 7, 18, 52, 168, 592, 2208, 8512, 33408, 132352, 526848, 2102272, 8398848, 33574912, 134258688, 536952832, 2147647488, 8590262272, 34360393728, 137440264192, 549758435328, 2199028498432, 8796103507968, 35184393060352, 140737530298368, 562950037307392
Offset: 0
-
[2^(n-1)*(2^n+5): n in [0..30]]; // Vincenzo Librandi, Apr 24 2015
-
Table[2^(n - 1) (2^n + 5), {n, 0, 30}] (* Vincenzo Librandi, Apr 24 2015 *)
LinearRecurrence[{6,-8},{3,7},30] (* Harvey P. Dale, Aug 21 2020 *)
-
A256873(n)=2^(n-1)*(2^n+5)
-
Vec((3-11*x)/((1-4*x)*(1-2*x)) + O(x^100)) \\ Colin Barker, Apr 26 2015
A326138
Numbers k such that A005187(k) < sigma(k) <= 2k, where A005187(k) = 2k - {binary weight of k}.
Original entry on oeis.org
6, 28, 110, 496, 884, 8128, 18632, 85936, 116624, 391612, 15370304, 17619844, 33550336, 73995392, 815634435, 3915380170, 5556840416, 6800695312, 8589869056, 42783299288, 80999455688, 137438691328, 217898810368, 546409576448, 1081071376208, 1661355408388
Offset: 1
815634435 = 3*5*7*11*547*1291 is included as in base-2 (A007088) it is written as 110000100111011001100000000011_2, thus A000120(815634435) = 12, while its nonnegative deficiency (A033879) is 2*815634435 - sigma(815634435) = 6 < 12.
A387352
Numbers m with deficiency 32: sigma(m) - 2*m = -32.
Original entry on oeis.org
250, 376, 1276, 12616, 20536, 396916, 801376, 1297312, 8452096, 33721216, 40575616, 59376256, 89397016, 99523456, 101556016, 150441856, 173706136, 269096704, 283417216, 500101936, 1082640256, 1846506832, 15531546112, 34675557856, 136310177392, 136783784608
Offset: 1
Deficiency k:
A191363 (k=2),
A125246 (k=4),
A141548 (k=6),
A125247 (k=8),
A101223 (k=10),
A141549 (k=12),
A141550 (k=14),
A125248 (k=16),
A223608 (k=18),
A223607 (k=20),
A223606 (k=22),
A385255(k=24),
A275702 (k=26),
A275997 (k=64).
Abundance k:
A088831 (k=2),
A088832 (k=4),
A087167 (k=6),
A088833 (k=8),
A223609 (k=10),
A141545 (k=12),
A141546 (k=14),
A141547 (k=16),
A223610 (k=18),
A223611 (k=20),
A223612 (k=22),
A223613 (k=24),
A275701 (k=26),
A175989 (k=32),
A275996 (k=64),
A292626 (k=128).
Comments