cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A274552 Numbers k such that sigma(k) == 0 (mod k-3).

Original entry on oeis.org

2, 4, 5, 6, 7, 8, 15, 52, 315, 592, 1155, 2102272, 815634435
Offset: 1

Views

Author

Paolo P. Lava, Jun 28 2016

Keywords

Examples

			sigma(4) mod (4-3) = 7 mod 1 = 0.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..2*10^6] | n ne 3 and SumOfDivisors(n) mod (n-3) eq 0 ]; // Vincenzo Librandi, Jul 02 2016
    
  • Mathematica
    k = -3; Select[Range[1, 10^6], # + k != 0 && Mod[DivisorSigma[1, #], # + k] == 0 &] (* Michael De Vlieger, Jul 01 2016 *)
  • PARI
    is(n) = if(n == 3, return(0), Mod(sigma(n), n-3)==0) \\ Felix Fröhlich, Jul 02 2016

Extensions

a(12)-a(13) from Giovanni Resta
a(1)=2 inserted by Max Alekseyev, Jun 08 2025

A274558 Numbers k such that sigma(k) == 0 (mod k-6).

Original entry on oeis.org

5, 7, 13, 14, 20, 30, 45, 76, 630, 688, 2310, 8896, 133888, 537051136, 1631268870, 35184418226176, 144115191028645888, 2305843021024854016
Offset: 1

Views

Author

Paolo P. Lava, Jul 05 2016

Keywords

Comments

Contains terms of A141549, odd terms of A141548 multiplied by 2, and 6 times terms of A191363 coprime to 6. - Max Alekseyev, May 25 2025

Examples

			sigma(7) mod (7-6) = 8 mod 1 = 0.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[7, 10^6],  # - 6 != 0 && Mod[DivisorSigma[1, #], # - 6] == 0 &] (* Michael De Vlieger, Jul 05 2016 *)

Extensions

a(14)-a(15) from Giovanni Resta
Term 5 inserted, a(16)-a(18) added by Max Alekseyev, Jun 04 2025

A087485 Odd numbers n such that 2n - sigma(n) = 6.

Original entry on oeis.org

7, 15, 315, 1155, 815634435
Offset: 1

Views

Author

Farideh Firoozbakht, Oct 23 2003

Keywords

Comments

This is a subsequence of A077374.
Except for the first term, all known terms of this sequence are divisible by 15. Is there a number n > 1 such that gcd(a(n),3)=1 or gcd(a(n),5)=1?
a(6) > 10^13. - Giovanni Resta, Mar 29 2013
Also, a subsequence of A141548. - M. F. Hasler, Apr 12 2015
The terms a(3) through a(5) are of the form a(k)*p*q, but I have proved that there is no other term of this form with k <= 5. - M. F. Hasler, Apr 13 2015
The terms are also of the form a(n) = 2*p(n) + 1, with primes p(n) = 3, 7, 157, 577, 407817217. All but the last one are such that 2*p(n) - 1 = a(n) - 2 is again prime. - M. F. Hasler, Nov 27 2016
Terms a(2..5) satisfy 2*a(n) - nextprime(sigma(a(n))) = (-1)^n, see also A067795. - M. F. Hasler, Feb 14 2017

Examples

			15 is in the sequence because 2*15-sigma(15)=6.
		

Crossrefs

Programs

  • Mathematica
    Do[If[OddQ[n]&&2n-DivisorSigma[1, n]==6, Print[n]], {n, 2*10^9}]
  • PARI
    is(n)=bittest(n,0)&&sigma(n)+6==2*n \\ M. F. Hasler, Apr 12 2015

Formula

a(3) = a(2)*3*7; a(4) = a(2)*7*11 with 7 = precprime(a(2)*2/3), 11=nextprime(a(2)*2/3); a(5) = a(4)*547*1291. - M. F. Hasler, Apr 13 2015

A256258 Triangle read by rows in which the row lengths are the terms of A011782 and row n lists the terms of A016969 except for the right border which gives the positive terms of A000225.

Original entry on oeis.org

1, 3, 5, 7, 5, 11, 17, 15, 5, 11, 17, 23, 29, 35, 41, 31, 5, 11, 17, 23, 29, 35, 41, 47, 53, 59, 65, 71, 77, 83, 89, 63, 5, 11, 17, 23, 29, 35, 41, 47, 53, 59, 65, 71, 77, 83, 89, 95, 101, 107, 113, 119, 125, 131, 137, 143, 149, 155, 161, 167, 173, 179, 185, 127, 5, 11, 17, 23, 29, 35, 41, 47, 53, 59, 65, 71, 77, 83, 89, 95, 101, 107, 113, 119, 125, 131, 137
Offset: 1

Views

Author

Omar E. Pol, Apr 04 2015

Keywords

Comments

Row sums give A002001.
The sum of all terms of first n rows gives A000302(n-1).
The rows of triangle A256263 converge to this sequence.
Rows converge to A016969.
First 11 terms agree with A151548.

Examples

			Written as an irregular triangle in which the row lengths are the terms of A011782, the sequence begins:
1;
3;
5,7;
5,11,17,15;
5,11,17,23,29,35,41,31;
5,11,17,23,29,35,41,47,53,59,65,71,77,83,89,63;
5,11,17,23,29,35,41,47,53,59,65,71,77,83,89,95,101,107,113,119,125,131,137,143,149,155,161,167,173,179,185,127;
...
Illustration of initial terms in the fourth quadrant of the square grid:
------------------------------------------------------------------------
n   a(n)             Compact diagram
------------------------------------------------------------------------
.            _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
1    1      |_| | | |_ _  | |_ _ _ _ _ _  | |
2    3      |_ _| | |_  | | |_ _ _ _ _  | | |
3    5      |_ _ _| | | | | |_ _ _ _  | | | |
4    7      |_ _ _ _| | | | |_ _ _  | | | | |
5    5      | | |_ _ _| | | |_ _  | | | | | |
6   11      | |_ _ _ _ _| | |_  | | | | | | |
7   17      |_ _ _ _ _ _ _| | | | | | | | | |
8   15      |_ _ _ _ _ _ _ _| | | | | | | | |
9    5      | | | | | | |_ _ _| | | | | | | |
10  11      | | | | | |_ _ _ _ _| | | | | | |
11  17      | | | | |_ _ _ _ _ _ _| | | | | |
12  23      | | | |_ _ _ _ _ _ _ _ _| | | | |
13  29      | | |_ _ _ _ _ _ _ _ _ _ _| | | |
14  35      | |_ _ _ _ _ _ _ _ _ _ _ _ _| | |
15  41      |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
16  31      |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
.
a(n) is also the number of cells in the n-th region of the diagram.
It appears that A241717 can be represented by a similar diagram.
		

Crossrefs

Programs

  • Mathematica
    Nest[Join[#, Range[Length[#] - 1]*6 - 1, {2 #[[-1]] + 1}] &, {1}, 7] (* Ivan Neretin, Feb 14 2017 *)

A275997 Numbers k whose deficiency is 64: 2k - sigma(k) = 64.

Original entry on oeis.org

134, 284, 410, 632, 1292, 1628, 4064, 9752, 12224, 22712, 66992, 72944, 403988, 556544, 2161664, 2330528, 8517632, 13228352, 14563832, 15422912, 20732792, 89472632, 134733824, 150511232, 283551872, 537903104, 731670272, 915473696, 1846850576, 2149548032, 2159587616
Offset: 1

Views

Author

Timothy L. Tiffin, Aug 16 2016

Keywords

Comments

Any term x = a(m) in this sequence can be used with any term y in A275996 to satisfy the property (sigma(x)+sigma(y))/(x+y) = 2, which is a necessary (but not sufficient) condition for two numbers to be amicable.
The smallest amicable pair is (220, 284) = (A275996(2), a(2)) = (A063990(1), A063990(2)), where 284 - 220 = 64 is the abundance of 220 and the deficiency of 284.
The amicable pair (66928, 66992) = (A275996(7), a(11)) = (A063990(18), A063990(19)), where 66992 - 66928 = 64 is the deficiency of 66992 and the abundance of 66928.
Contains numbers 2^(k-1)*(2^k + 63) whenever 2^k + 63 is prime. - Max Alekseyev, Aug 27 2025

Examples

			a(1) = 134, since 2*134 - sigma(134) = 268 - 204 = 64.
		

Crossrefs

Deficiency k: A191363 (k=2), A125246 (k=4), A141548 (k=6), A125247 (k=8), A101223 (k=10), A141549 (k=12), A141550 (k=14), A125248 (k=16), A223608 (k=18), A223607 (k=20), A223606 (k=22), A385255(k=24), A275702 (k=26), A387352 (k=32).
Abundance k: A088831 (k=2), A088832 (k=4), A087167 (k=6), A088833 (k=8), A223609 (k=10), A141545 (k=12), A141546 (k=14), A141547 (k=16), A223610 (k=18), A223611 (k=20), A223612 (k=22), A223613 (k=24), A275701 (k=26), A175989 (k=32), A275996 (k=64), A292626 (k=128).

Programs

  • Mathematica
    Select[Range[10^7], 2 # - DivisorSigma[1, #] == 64 &] (* Michael De Vlieger, Jan 10 2017 *)
  • PARI
    isok(n) = 2*n - sigma(n) == 64; \\ Michel Marcus, Dec 30 2016

Extensions

a(23)-a(31) from Jinyuan Wang, Mar 02 2020

A292626 Numbers k whose abundance is 128: sigma(k) - 2*k = 128.

Original entry on oeis.org

860, 5336, 6536, 9656, 16256, 55796, 70864, 98048, 361556, 776096, 2227616, 4145216, 4498136, 4632896, 8124416, 13086016, 34869056, 38546576, 150094976, 172960856, 196066256, 962085536, 1080008576, 1733780336, 1844788112, 2143256576, 2531343872, 2986104064, 9677743616, 11276687456, 17104503968, 20680182272, 21568135616
Offset: 1

Views

Author

Fabian Schneider, Sep 20 2017

Keywords

Crossrefs

Subsequence of A259174.
Deficiency k: A191363 (k=2), A125246 (k=4), A141548 (k=6), A125247 (k=8), A101223 (k=10), A141549 (k=12), A141550 (k=14), A125248 (k=16), A223608 (k=18), A223607 (k=20), A223606 (k=22), A385255(k=24), A275702 (k=26), A387352 (k=32), A275997 (k=64).
Abundance k: A088831 (k=2), A088832 (k=4), A087167 (k=6), A088833 (k=8), A223609 (k=10), A141545 (k=12), A141546 (k=14), A141547 (k=16), A223610 (k=18), A223611 (k=20), A223612 (k=22), A223613 (k=24), A275701 (k=26), A175989 (k=32), A275996 (k=64).

Programs

  • Mathematica
    fQ[n_] := DivisorSigma[1, n] == 2 n + 128; Select[ Range@ 10^8, fQ] (* Robert G. Wilson v, Nov 19 2017 *)
  • PARI
    isok(n) = sigma(n) - 2*n == 128; \\ Michel Marcus, Sep 20 2017

Extensions

a(9)-a(18) from Michel Marcus, Sep 20 2017
a(19)-a(24), a(26), a(29)-a(30), a(33) from Robert G. Wilson v, Nov 20 2017
Missing terms a(25), a(27)-a(28), a(31)-a(32) inserted and terms a(34) onward added by Max Alekseyev, Aug 30 2025

A256873 a(n) = 2^(n-1)*(2^n+5).

Original entry on oeis.org

3, 7, 18, 52, 168, 592, 2208, 8512, 33408, 132352, 526848, 2102272, 8398848, 33574912, 134258688, 536952832, 2147647488, 8590262272, 34360393728, 137440264192, 549758435328, 2199028498432, 8796103507968, 35184393060352, 140737530298368, 562950037307392
Offset: 0

Views

Author

M. F. Hasler, Apr 24 2015

Keywords

Comments

For k in A059242, a(k) is in A141548, i.e., A256873 o A059242 is a subsequence of A141548.

Programs

  • Magma
    [2^(n-1)*(2^n+5): n in [0..30]]; // Vincenzo Librandi, Apr 24 2015
    
  • Mathematica
    Table[2^(n - 1) (2^n + 5), {n, 0, 30}] (* Vincenzo Librandi, Apr 24 2015 *)
    LinearRecurrence[{6,-8},{3,7},30] (* Harvey P. Dale, Aug 21 2020 *)
  • PARI
    A256873(n)=2^(n-1)*(2^n+5)
    
  • PARI
    Vec((3-11*x)/((1-4*x)*(1-2*x)) + O(x^100)) \\ Colin Barker, Apr 26 2015

Formula

G.f.: (3-11*x)/((1-4*x)*(1-2*x)). - Vincenzo Librandi, Apr 24 2015
a(n) = 6*a(n-1)-8*a(n-2). - Colin Barker, Apr 26 2015

A326138 Numbers k such that A005187(k) < sigma(k) <= 2k, where A005187(k) = 2k - {binary weight of k}.

Original entry on oeis.org

6, 28, 110, 496, 884, 8128, 18632, 85936, 116624, 391612, 15370304, 17619844, 33550336, 73995392, 815634435, 3915380170, 5556840416, 6800695312, 8589869056, 42783299288, 80999455688, 137438691328, 217898810368, 546409576448, 1081071376208, 1661355408388
Offset: 1

Views

Author

Antti Karttunen, Jun 13 2019

Keywords

Comments

Non-abundant numbers whose deficiency (A033879) is less than their binary weight (A000120).
No other terms below < 2^31.

Examples

			815634435 = 3*5*7*11*547*1291 is included as in base-2 (A007088) it is written as 110000100111011001100000000011_2, thus A000120(815634435) = 12, while its nonnegative deficiency (A033879) is 2*815634435 - sigma(815634435) = 6 < 12.
		

Crossrefs

Cf. A000120, A000203, A000396 (subsequence), A005187, A033879, A294898, A295296 (deficiency equals binary weight), A326131, A326132.
Intersection of A263837 and A326133.
Cf. also A087485, A141548, A188597.

Programs

Extensions

a(16)-a(26) from Giovanni Resta, Jun 16 2019

A385255 Numbers m whose deficiency is 24: sigma(m) - 2*m = -24.

Original entry on oeis.org

124, 9664, 151115727458150838697984
Offset: 1

Views

Author

Max Alekseyev, Jul 29 2025

Keywords

Comments

Contains numbers 2^(k-1)*(2^k + 23) for k in A057203. First three terms have this form.

Crossrefs

Deficiency k: A191363 (k=2), A125246 (k=4), A141548 (k=6), A125247 (k=8), A101223 (k=10), A141549 (k=12), A141550 (k=14), A125248 (k=16), A223608 (k=18), A223607 (k=20), A223606 (k=22), A275702 (k=26).
Abundance k: A088831 (k=2), A088832 (k=4), A087167 (k=6), A088833 (k=8), A223609 (k=10), A141545 (k=12), A141546 (k=14), A141547 (k=16), A223610 (k=18), A223611 (k=20), A223612 (k=22), A223613 (k=24), A275701 (k=26).
Cf. A057203.

A387352 Numbers m with deficiency 32: sigma(m) - 2*m = -32.

Original entry on oeis.org

250, 376, 1276, 12616, 20536, 396916, 801376, 1297312, 8452096, 33721216, 40575616, 59376256, 89397016, 99523456, 101556016, 150441856, 173706136, 269096704, 283417216, 500101936, 1082640256, 1846506832, 15531546112, 34675557856, 136310177392, 136783784608
Offset: 1

Views

Author

Max Alekseyev, Aug 27 2025

Keywords

Comments

Contains numbers 2^(k-1)*(2^k + 31) for k in A247952.

Crossrefs

Deficiency k: A191363 (k=2), A125246 (k=4), A141548 (k=6), A125247 (k=8), A101223 (k=10), A141549 (k=12), A141550 (k=14), A125248 (k=16), A223608 (k=18), A223607 (k=20), A223606 (k=22), A385255(k=24), A275702 (k=26), A275997 (k=64).
Abundance k: A088831 (k=2), A088832 (k=4), A087167 (k=6), A088833 (k=8), A223609 (k=10), A141545 (k=12), A141546 (k=14), A141547 (k=16), A223610 (k=18), A223611 (k=20), A223612 (k=22), A223613 (k=24), A275701 (k=26), A175989 (k=32), A275996 (k=64), A292626 (k=128).
Cf. A247952.
Previous Showing 11-20 of 23 results. Next