cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A225472 Triangle read by rows, k!*S_3(n, k) where S_m(n, k) are the Stirling-Frobenius subset numbers of order m; n >= 0, k >= 0.

Original entry on oeis.org

1, 2, 3, 4, 21, 18, 8, 117, 270, 162, 16, 609, 2862, 4212, 1944, 32, 3093, 26550, 72090, 77760, 29160, 64, 15561, 230958, 1031940, 1953720, 1662120, 524880, 128, 77997, 1941030, 13429962, 39735360, 57561840, 40415760, 11022480, 256, 390369, 15996222, 165198852
Offset: 0

Views

Author

Peter Luschny, May 17 2013

Keywords

Comments

The Stirling-Frobenius subset numbers are defined in A225468 (see also the Sage program).

Examples

			[n\k][0,     1,      2,       3,       4,       5,      6 ]
[0]   1,
[1]   2,     3,
[2]   4,    21,     18,
[3]   8,   117,    270,     162,
[4]  16,   609,   2862,    4212,    1944,
[5]  32,  3093,  26550,   72090,   77760,   29160,
[6]  64, 15561, 230958, 1031940, 1953720, 1662120, 524880.
		

Crossrefs

Cf. A131689 (m=1), A145901 (m=2), A225473 (m=4).
Cf. A225466, A225468, columns: A000079, 3*A016127, 3^2*2!*A016297, 3^3*3!*A025999.

Programs

  • Maple
    SF_SO := proc(n, k, m) option remember;
    if n = 0 and k = 0 then return(1) fi;
    if k > n or k < 0 then return(0) fi;
    m*k*SF_SO(n-1, k-1, m) + (m*(k+1)-1)*SF_SO(n-1, k, m) end:
    seq(print(seq(SF_SO(n, k, 3), k=0..n)), n = 0..5);
  • Mathematica
    EulerianNumber[n_, k_, m_] := EulerianNumber[n, k, m] = (If[ n == 0, Return[If[k == 0, 1, 0]]]; Return[(m*(n-k)+m-1)*EulerianNumber[n-1, k-1, m] + (m*k+1)*EulerianNumber[n-1, k, m]]); SFSO[n_, k_, m_] := Sum[ EulerianNumber[n, j, m]*Binomial[j, n-k], {j, 0, n}]; Table[ SFSO[n, k, 3], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 29 2013, translated from Sage *)
  • Sage
    @CachedFunction
    def EulerianNumber(n, k, m) :
        if n == 0: return 1 if k == 0 else 0
        return (m*(n-k)+m-1)*EulerianNumber(n-1, k-1, m)+ (m*k+1)*EulerianNumber(n-1, k, m)
    def SF_SO(n, k, m):
        return add(EulerianNumber(n, j, m)*binomial(j, n - k) for j in (0..n))
    for n in (0..6): [SF_SO(n, k, 3) for k in (0..n)]

Formula

For a recurrence see the Maple program.
T(n, 0) ~ A000079; T(n, 1) ~ A005057; T(n, n) ~ A032031.
From Wolfdieter Lang, Apr 10 2017: (Start)
E.g.f. for sequence of column k: exp(2*x)*(exp(3*x) - 1)^k, k >= 0. From the Sheffer triangle S2[3,2] = A225466 with column k multiplied with k!.
O.g.f. for sequence of column k is 3^k*k!*x^k/Product_{j=0..k} (1 - (2+3*j)*x), k >= 0.
T(n, k) = Sum_{j=0..k} (-1)^(k-j)*binomial(k, j)*(2+3*j)^n, 0 <= k <= n.
Three term recurrence (see the Maple program): T(n, k) = 0 if n < k , T(n, -1) = 0, T(0,0) = 1, T(n, k) = 3*k*T(n-1, k-1) + (2 + 3*k)*T(n-1, k) for n >= 1, k=0..n.
For the column scaled triangle (with diagonal 1s) see A225468, and the Bala link with (a,b,c) = (3,0,2), where Sheffer triangles are called exponential Riordan triangles.
(End)
The e.g.f. of the row polynomials R(n, x) = Sum_{k=0..n} T(n, k)*x^k is exp(2*z)/(1 - x*(exp(3*z) - 1)). - Wolfdieter Lang, Jul 12 2017

A154372 Triangle T(n,k) = (k+1)^(n-k)*binomial(n,k).

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 12, 9, 1, 1, 32, 54, 16, 1, 1, 80, 270, 160, 25, 1, 1, 192, 1215, 1280, 375, 36, 1, 1, 448, 5103, 8960, 4375, 756, 49, 1, 1, 1024, 20412, 57344, 43750, 12096, 1372, 64, 1
Offset: 0

Views

Author

Paul Curtz, Jan 08 2009

Keywords

Comments

From A152650/A152656,coefficients of other exponential polynomials(*). a(n) is triangle A152818 where terms of each column is divided by the beginning one. See A000004, A001787(n+1), A006043=2*A027472, A006044=6*A038846.
(*) Not factorial as written in A006044. See A000110, Bell-Touchard. Second diagonal is 1,4,9,16,25, denominators of Lyman's spectrum of hydrogen, A000290(n+1) which has homogeneous indices for denominators series of Rydberg-Ritz spectrum of hydrogen.
The matrix inverse starts
1;
-1, 1;
3, -4, 1;
-16, 24, -9, 1;
125, -200, 90, -16, 1;
-1296, 2160, -1080, 240, -25, 1;
16807, -28812, 15435, -3920, 525, -36, 1;
.. compare with A122525 (row reversed). - R. J. Mathar, Mar 22 2013
From Peter Bala, Jan 14 2015: (Start)
Exponential Riordan array [exp(z), z*exp(z)]. This triangle is the particular case a = 0, b = 1, c = 1 of the triangle of generalized Stirling numbers of the second kind S(a,b,c) defined in the Bala link. Cf. A059297.
This is the triangle of connection constants when expressing the monomials x^n as a linear combination of the basis polynomials (x - 1)*(x - k - 1)^(k-1), k = 0,1,2,.... For example, from row 3 we have x^3 = 1 + 12*(x - 1) + 9*(x - 1)*(x - 3) + (x - 1)*(x - 4)^2.
Let M be the infinite lower unit triangular array with (n,k)-th entry (k*(n - k + 1) + 1)/(k + 1)*binomial(n,k). M is the row reverse of A145033. For k = 0,1,2,... define M(k) to be the lower unit triangular block array
/I_k 0\
\ 0 M/ having the k X k identity matrix I_k as the upper left block; in particular, M(0) = M. The infinite product M(0)*M(1)*M(2)*..., which is clearly well-defined, is equal to the present triangle. See the Example section. (End)
T(n,k) is also the number of idempotent partial transformations of {1,2,...,n} having exactly k fixed points. - Geoffrey Critzer, Nov 25 2021

Examples

			With the array M(k) as defined in the Comments section, the infinite product M(0)*M(1)*M(2)*... begins
/1      \ /1        \ /1        \      /1        \
|1 1     ||0 1       ||0 1      |      |1  1      |
|1 3 1   ||0 1 1     ||0 0 1    |... = |1  4  1   |
|1 6 5 1 ||0 1 3 1   ||0 0 1 1  |      |1 12  9  1|
|...     ||0 1 6 5 1 ||0 0 1 3 1|      |...       |
|...     ||...       ||...      |      |          |
- _Peter Bala_, Jan 13 2015
		

Crossrefs

Programs

  • Magma
    /* As triangle */ [[(k+1)^(n-k)*Binomial(n,k) : k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Sep 15 2016
  • Mathematica
    T[n_, k_] := (k + 1)^(n - k)*Binomial[n, k]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Sep 15 2016 *)

Formula

T(n,k) = (k+1)^(n-k)*binomial(n,k). k!*T(n,k) gives the entries for A152818 read as a triangular array.
E.g.f.: exp(x*(1+t*exp(x))) = 1 + (1+t)*x + (1+4*t+t^2)*x^2/2! + (1+12*t+9*t^2+t*3)*x^3/3! + .... O.g.f.: Sum_{k>=1} (t*x)^(k-1)/(1-k*x)^k = 1 + (1+t)*x + (1+4*t+t^2)*x^2 + .... Row sums are A080108. - Peter Bala, Oct 09 2011
From Peter Bala, Jan 14 2015: (Start)
Recurrence equation: T(n+1,k+1) = T(n,k+1) + Sum_{j = 0..n-k} (j + 1)*binomial(n,j)*T(n-j,k) with T(n,0) = 1 for all n.
Equals the matrix product A007318 * A059297. (End)

A290319 Triangle read by rows: T(n, k) is the Sheffer triangle ((1 - 4*x)^(-1/4), (-1/4)*log(1 - 4*x)). A generalized Stirling1 triangle.

Original entry on oeis.org

1, 1, 1, 5, 6, 1, 45, 59, 15, 1, 585, 812, 254, 28, 1, 9945, 14389, 5130, 730, 45, 1, 208845, 312114, 122119, 20460, 1675, 66, 1, 5221125, 8011695, 3365089, 633619, 62335, 3325, 91, 1, 151412625, 237560280, 105599276, 21740040, 2441334, 158760, 5964, 120, 1, 4996616625, 7990901865, 3722336388, 823020596, 102304062, 7680414, 355572, 9924, 153, 1, 184874815125, 300659985630, 145717348221, 34174098440, 4608270890, 386479380, 20836578, 722760, 15585, 190, 1
Offset: 0

Views

Author

Wolfdieter Lang, Aug 08 2017

Keywords

Comments

This generalization of the unsigned Stirling1 triangle A132393 is called here |S1hat[4,1]|.
The signed matrix S1hat[4,1] with elements (-1)^(n-k)*|S1hat[4,1]|(n, k) is the inverse of the generalized Stirling2 Sheffer matrix S2hat[4,1] with elements S2[4,1](n, k)/d^k, where S2[4,1] is Sheffer (exp(x), exp(4*x) - 1), given in A285061. See also the P. Bala link below for the scaled and signed version s_{(4,0,1)}.
For the general |S1hat[d,a]| case see a comment in A286718.

Examples

			The triangle T(n, k) begins:
  n\k         0         1         2        3       4      5    6   7  8 ...
  0:          1
  1:          1         1
  2:          5         6         1
  3:         45        59        15        1
  4:        585       812       254       28       1
  5:       9945     14389      5130      730      45      1
  6:     208845    312114    122119    20460    1675     66    1
  7:    5221125   8011695   3365089   633619   62335   3325   91   1
  8:  151412625 237560280 105599276 21740040 2441334 158760 5964 120  1
  ...
From _Wolfdieter Lang_, Aug 11 2017: (Start)
Recurrence: T(4, 2) = T(3, 1) + (16 - 3)*T(3, 2) = 59 + 13*15 = 254.
Boas-Buck recurrence for column k=2 and n=4:
T(4, 2) = (4!/2)*(4*(1 + 8*(5/12))*T(2, 2)/2! + 1*(1 + 8*(1/2))*T(3,2)/3!) = (4!/2)*(2*13/3 + 5*15/3!) = 254. (End)
		

Crossrefs

S2[d,a] for [d,a] = [1,0], [2,1], [3,1], [3,2], [4,1] and [4,3] is A048993, A154537, A282629, A225466, A285061 and A225467, respectively.
|S1hat[d,a]| for [d,a] = [1,0], [2,1], [3,1], [3,2] and [4,3] is A132393, A028338, A286718, A225470 and A225471, respectively.
Columns k=0..3 give A007696, A024382(n-1), A383700, A383701.
Row sums: A001813. Alternating row sums: A000007.

Programs

  • Mathematica
    FoldList[Join[Table[If[i == 1, 0, #[[i-1]]] + (4*#2 - 3)*#[[i]], {i, Length[#]}], {1}] &, {1}, Range[10]] (* Paolo Xausa, Aug 18 2025 *)

Formula

Recurrence: T(n, k) = T(n-1, k-1) + (4*n - 3)*T(n-1, k), for n >= 1, k = 0..n, and T(n, -1) = 0, T(0, 0) = 1 and T(n, k) = 0 for n < k.
E.g.f. of row polynomials R(n, x) = Sum_{k=0..n} T(n, k)*x^k (i.e., e.g.f. of the triangle): (1 - 4*z)^{-(x + 1)/4}.
E.g.f. of column k is (1 - 4*x)^(-1/4)*((-1/4)*log(1 - 4*x))^k/k!.
Recurrence for row polynomials is R(n, x) = (x+1)*R(n-1, x+4), with R(0, x) = 1. Row polynomial R(n, x) = risefac(4,1;x,n) with the rising factorial risefac(d,a;x,n) :=Product_{j=0..n-1} (x + (a + j*d)). (For the signed case see the Bala link, eq. (16)).
T(n, k) = sigma^{(n)}{n-k}(a_0, a_1, ..., a{n-1}) with the elementary symmetric functions with indeterminates a_j = 1 + 4*j.
T(n, k) = Sum_{j=0..n-k} binomial(n-j, k)*|S1|(n, n-j)*4^j, with the unsigned Stirling1 triangle |S1| = A132393.
Boas-Buck type recurrence for column sequence k: T(n, k) = (n!/(n - k)) * Sum_{p=k..n-1} 4^(n-1-p)*(1 + 4*k*beta(n-1-p))*T(p, k)/p!, for n > k >= 0, with input T(k, k) = 1, and beta(k) = A002208(k+1)/A002209(k+1), beginning with {1/2, 5/12, 3/8, 251/720, ...}. See a comment and references in A286718. - Wolfdieter Lang, Aug 11 2017

A143399 Expansion of x^k/Product_{t=k..2k} (1-tx) for k=4.

Original entry on oeis.org

0, 0, 0, 0, 1, 30, 545, 7770, 95781, 1071630, 11192665, 111095490, 1060634861, 9822843030, 88799732385, 787259974410, 6869327386741, 59158464019230, 503954741177705, 4254156112792530, 35637875826743421, 296621138907400230, 2455329298857576625
Offset: 0

Views

Author

Alois P. Heinz, Aug 12 2008

Keywords

Comments

a(n) is also the number of forests of 4 labeled rooted trees of height at most 1 with n labels, where any root may contain >= 1 labels.
This gives also the fifth column of the Sheffer triangle A143496 (4-restricted Stirling2 numbers). See the e.g.f. given below. See also A193685 for Sheffer comments and the hint for the proof in the o.g.f. formula there. - Wolfdieter Lang, Oct 08 2011

Crossrefs

4th column of A143395.

Programs

  • Maple
    a:= proc(k::nonnegint) local M; M := Matrix(k+1, (i,j)-> if (i=j-1) then 1 elif j=1 then [seq(-1* coeff(product(1-t*x, t=k..2*k), x, u), u=1..k+1)][i] else 0 fi); p-> (M^p)[1, k+1] end(4): seq(a(n), n=0..30);
  • Mathematica
    LinearRecurrence[{30,-355,2070,-5944,6720},{0,0,0,0,1},30] (* Harvey P. Dale, Mar 12 2013 *)

Formula

G.f.: x^4/((1-4x)(1-5x)(1-6x)(1-7x)(1-8x)).
a(n) = 30a(n-1) -355a(n-2) +2070a(n-3) -5944a(n-4) +6720a(n-5).
E.g.f.: exp(4*x)*((exp(x)-1)^4)/4!. - Wolfdieter Lang, Oct 08 2011

A143400 Expansion of x^k/Product_{t=k..2k} (1-tx) for k=5.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 45, 1190, 24150, 416451, 6427575, 91549480, 1227283200, 15695180501, 193333245105, 2310273772170, 26927270656650, 307413790470151, 3449088814306635, 38132767214613260, 416342920938136500, 4497187699884973401, 48129773048982636165
Offset: 0

Views

Author

Alois P. Heinz, Aug 12 2008

Keywords

Comments

a(n) is also the number of forests of 5 labeled rooted trees of height at most 1 with n labels, where any root may contain >= 1 labels.

Crossrefs

5th column of A143395.

Programs

  • Maple
    a := proc(k::nonnegint) local M; M := Matrix(k+1, (i,j)-> if (i=j-1) then 1 elif j=1 then [seq(-1* coeff(product(1-t*x, t=k..2*k), x,u), u=1..k+1)][i] else 0 fi); p-> (M^p)[1,k+1] end(5); seq(a(n), n=0..30);
  • Mathematica
    CoefficientList[Series[x^5/((1-5x)(1-6x)(1-7x)(1-8x)(1-9x)(1-10x)),{x,0,30}],x] (* or *) LinearRecurrence[{45,-835,8175,-44524,127860,-151200},{0,0,0,0,0,1},30] (* Harvey P. Dale, Aug 30 2018 *)

Formula

G.f.: x^5/((1-5x)(1-6x)(1-7x)(1-8x)(1-9x)(1-10x)).
E.g.f.: exp(5*x)*((exp(x)-1)^5)/5!.

A143401 Expansion of x^k/Product_{t=k..2k} (1-tx) for k=6.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 63, 2282, 62370, 1428987, 28979181, 537306484, 9302333040, 152587968533, 2396472657579, 36320866824606, 534421447961310, 7670116319449039, 107781064078390857, 1487396442778796648, 20208696810429799980, 270879169288278532905
Offset: 0

Views

Author

Alois P. Heinz, Aug 12 2008

Keywords

Comments

a(n) is also the number of forests of 6 labeled rooted trees of height at most 1 with n labels, where any root may contain >= 1 labels.

Crossrefs

6th column of A143395.

Programs

  • Maple
    a:= proc(k::nonnegint) local M; M:= Matrix(k+1, (i,j)-> if (i=j-1) then 1 elif j=1 then [seq(-1* coeff(product(1-t*x, t=k..2*k), x,u), u=1..k+1)][i] else 0 fi); p-> (M^p)[1,k+1] end(6); seq(a(n), n=0..27);

Formula

G.f.: x^6/((1-6x)(1-7x)(1-8x)(1-9x)(1-10x)(1-11x)(1-12x)).
E.g.f.: exp(6*x)*((exp(x)-1)^6)/6!.

A143402 Expansion of x^k/Product_{t=k..2k} (1-tx) for k=7.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 84, 3990, 141120, 4138827, 106469748, 2484848080, 53791898160, 1096912870053, 21307466872692, 397605494092170, 7173885616672320, 125794299357058879, 2152559266567924116, 36065247772657686660, 593280221500152370800
Offset: 0

Views

Author

Alois P. Heinz, Aug 12 2008

Keywords

Comments

a(n) is also the number of forests of 7 labeled rooted trees of height at most 1, with n labels, where any root may contain >= 1 labels.

Crossrefs

7th column of A143395.

Programs

  • Maple
    a:= proc(k::nonnegint) local M; M:= Matrix(k+1, (i,j)-> if (i=j-1) then 1 elif j=1 then [seq(-1* coeff(product(1-t*x, t=k..2*k), x,u), u=1..k+1)][i] else 0 fi); p-> (M^p)[1,k+1] end(7): seq(a(n), n=0..30);

Formula

G.f.: x^7/((1-7x)(1-8x)(1-9x)(1-10x)(1-11x)(1-12x)(1-13x)(1-14x)).
E.g.f.: exp(7*x)*((exp(x)-1)^7)/7!.

A143403 Expansion of x^k/Product_{t=k..2k} (1-tx) for k=8.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 108, 6510, 289080, 10550067, 335170836, 9597839680, 253489991040, 6275077781973, 147318890173884, 3309320153700210, 71623038281001480, 1501654449863348119, 30633757929391948452, 610246760750629071300, 11906371167306982146000
Offset: 0

Views

Author

Alois P. Heinz, Aug 12 2008

Keywords

Comments

a(n) is also the number of forests of 8 labeled rooted trees of height at most 1 with n labels, where any root may contain >= 1 labels.

Crossrefs

8th column of A143395.

Programs

  • Maple
    a:= proc(k::nonnegint) local M; M:= Matrix(k+1, (i,j)-> if (i=j-1) then 1 elif j=1 then [seq(-1* coeff(product(1-t*x, t=k..2*k), x,u), u=1..k+1)][i] else 0 fi); p-> (M^p)[1,k+1] end(8); seq(a(n), n=0..27);

Formula

G.f.: x^8/((1-8x)(1-9x)(1-10x)(1-11x)(1-12x)(1-13x)(1-14x)(1-15x)(1-16x)).
E.g.f.: exp(8*x)*((exp(x)-1)^8)/8!.

A143404 Expansion of x^k/Product_{t=k..2k} (1-tx) for k=9.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 135, 10065, 547965, 24336312, 934863930, 32189799070, 1017281878470, 30001945084683, 835898091070185, 22206607023852615, 566594907018764715, 13964270139973201114, 333991935681805199700, 7781827783346875932300
Offset: 0

Views

Author

Alois P. Heinz, Aug 12 2008

Keywords

Comments

a(n) is also the number of forests of 9 labeled rooted trees of height at most 1 with n labels, where any root may contain >= 1 labels.

Crossrefs

9th column of A143395.

Programs

  • Maple
    a:= proc(k::nonnegint) local M; M:= Matrix(k+1, (i,j)-> if (i=j-1) then 1 elif j=1 then [seq(-1* coeff(product(1-t*x, t=k..2*k), x,u), u=1..k+1)][i] else 0 fi); p-> (M^p)[1,k+1] end(9): seq(a(n), n=0..30);
  • Mathematica
    CoefficientList[Series[x^9/Product[1-t x,{t,9,18}],{x,0,30}],x] (* or *) LinearRecurrence[{135,-8160,290790,-6765213,107358615,-1176812090, 8797620060,-42924478536,123418922400, -158789030400}, {0,0,0,0,0,0,0,0,0,1},31] (* Harvey P. Dale, May 22 2012 *)

Formula

G.f.: x^9/ ((1-9x)(1-10x)(1-11x)(1-12x)(1-13x)(1-14x)(1-15x)(1-16x)(1-17x)(1-18*x)).
a(n)=0 for n<9, a(9)=1, a(n) = 135*a(n-1) -8160*a(n-2) +290790*a(n-3) -6765213*a(n-4) +107358615*a(n-5) -1176812090*a(n-6) +8797620060*a(n-7) -42924478536*a(n-8) +123418922400*a(n-9) -158789030400*a(n-10). - Harvey P. Dale, May 22 2012
E.g.f.: exp(9*x)*((exp(x)-1)^9)/9!. - Alois P. Heinz, May 04 2016

A383869 a(n) = [x^n] 1/Product_{k=0..n} (1 - (n+k)*x).

Original entry on oeis.org

1, 3, 55, 1890, 95781, 6427575, 537306484, 53791898160, 6275077781973, 835898091070185, 125195263380478655, 20825548503275385870, 3809430011164368694260, 759987002381075483922180, 164221938436980055710082200, 38209754165858724861944820000, 9524153723280871205135022364485
Offset: 0

Views

Author

Seiichi Manyama, May 13 2025

Keywords

Crossrefs

Central terms of triangle A143395.

Programs

  • Mathematica
    Table[SeriesCoefficient[1/Product[(1 - (n + k)*x), {k, 0, n}], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, May 17 2025 *)
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*(n+k)^(2*n)*binomial(n, k))/n!;

Formula

a(n) = (1/n!) * Sum_{k=0..n} (-1)^(n-k) * (n+k)^(2*n) * binomial(n,k).
a(n) = Sum_{k=0..n} n^(n-k) * binomial(2*n,n+k) * Stirling2(n+k,n).
a(n) = Sum_{k=0..n} (-1)^k * (2*n)^(n-k) * binomial(2*n,n+k) * Stirling2(n+k,n).
a(n) ~ (r-1)^((r-1)*n) * (1+r)^(2*n + 1) * exp(n) * n^(n - 1/2) / (sqrt(2*Pi*(1 + (4-r)*r)) * r^(r*n)), where r = 2.106565648173949260853515992430777519716829316322... is the root of the equation exp(2/(1+r)) = r/(r-1). - Vaclav Kotesovec, May 17 2025
Previous Showing 11-20 of 20 results.