cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A280128 Expansion of Product_{k>=2} (1 + mu(k)^2*x^k), where mu(k) is the Moebius function (A008683).

Original entry on oeis.org

1, 0, 1, 1, 0, 2, 1, 2, 2, 2, 3, 3, 3, 5, 4, 6, 7, 7, 9, 9, 11, 13, 14, 16, 19, 18, 24, 23, 28, 31, 33, 39, 42, 46, 52, 57, 63, 71, 76, 87, 92, 103, 113, 123, 135, 149, 161, 178, 193, 210, 231, 249, 274, 298, 323, 352, 382, 414, 451, 486, 528, 572, 617, 669
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 26 2016

Keywords

Comments

Number of partitions of n into distinct squarefree parts > 1 (A144338).

Examples

			G.f. = 1 + x^2 + x^3 + 2*x^5 + x^6 + 2*x^7 + 2*x^8 + 2*x^9 + 3*x^10 + 3*x^11 + ...
a(10) = 3 because we have [10], [7, 3] and [5, 3, 2].
		

Crossrefs

Programs

  • Maple
    with(numtheory): seq(coeff(series(mul(1+mobius(k)^2*x^k,k=2..n), x,n+1),x,n),n=0..70); # Muniru A Asiru, Jul 30 2018
  • Mathematica
    nmax = 75; CoefficientList[Series[Product[1 + MoebiusMu[k]^2 x^k, {k, 2, nmax}], {x, 0, nmax}], x]
  • PARI
    {a(n) = if(n < 0, 0, polcoeff( prod(k=2, n, 1 + issquarefree(k)*x^k + x*O(x^n)), n))}; /* Michael Somos, Dec 26 2016 */

Formula

G.f.: Product_{k>=2} (1 + mu(k)^2*x^k).

A282290 Expansion of (Sum_{p prime, i>=2} x^(p^i))*(Sum_{j>=2} mu(j)^2*x^j), where mu() is the Moebius function (A008683).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 2, 3, 1, 1, 3, 3, 1, 1, 3, 4, 1, 3, 3, 4, 1, 2, 3, 4, 2, 3, 6, 4, 3, 3, 4, 5, 1, 5, 7, 6, 3, 3, 7, 4, 3, 4, 7, 6, 3, 4, 5, 7, 2, 3, 5, 7, 4, 3, 4, 5, 4, 4, 7, 6, 4, 4, 8, 6, 4, 6, 7, 7, 2, 5, 7, 7, 2, 4, 9, 5, 4, 4, 7, 8, 4, 5, 9, 9, 4, 4, 7, 7, 5, 6, 8, 8, 5, 5, 8, 6, 4, 6, 8, 7, 5, 6, 6, 6, 2, 5, 10
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 11 2017

Keywords

Comments

Number of ways of writing n as a sum of a proper prime power (A246547) and a squarefree number > 1 (A144338).
Conjecture: a(n) > 0 for all n > 8.

Examples

			a(19) = 4 because we have [16, 3], [15, 4], [11, 8] and [10, 9].
		

Crossrefs

Programs

  • Mathematica
    nmax = 110; CoefficientList[Series[Sum[Sign[PrimeOmega[i] - 1] Floor[1/PrimeNu[i]] x^i, {i, 2, nmax}] Sum[MoebiusMu[j]^2 x^j, {j, 2, nmax}], {x, 0, nmax}], x]

Formula

G.f.: (Sum_{p prime, i>=2} x^(p^i))*(Sum_{j>=2} mu(j)^2*x^j).

A363919 a(n) = n^excess(n), where excess(n) = A046660(n).

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 64, 9, 1, 1, 12, 1, 1, 1, 4096, 1, 18, 1, 20, 1, 1, 1, 576, 25, 1, 729, 28, 1, 1, 1, 1048576, 1, 1, 1, 1296, 1, 1, 1, 1600, 1, 1, 1, 44, 45, 1, 1, 110592, 49, 50, 1, 52, 1, 2916, 1, 3136, 1, 1, 1, 60, 1, 1, 63, 1073741824, 1, 1, 1, 68
Offset: 1

Views

Author

Keywords

Examples

			108 = 2^2 * 3^3 => excess(108) = 5 - 2 => a(108) = 108^3 = 1259712.
		

Crossrefs

Programs

  • Julia
    using Nemo
    exc(n::fmpz) = sum(e - 1 for (p, e) in factor(n))
    A363919(n::fmpz) = n < 2 ? fmpz(1) : n^exc(n)
    println([A363919(fmpz(n)) for n in 1:68])
    
  • Maple
    with(NumberTheory):
    A363919 := n -> n^(NumberOfPrimeFactors(n) - NumberOfPrimeFactors(n, 'distinct')):
    # Alternative:
    a := n -> local i: n^add(i[2] - 1, i in ifactors(n)[2]): seq(a(n), n = 1..68);
  • Mathematica
    Array[#^(PrimeOmega[#] - PrimeNu[#]) &, 120]
  • PARI
    a(n) = my(f=factor(n)[, 2]); n^(vecsum(f)-#f); \\ Michel Marcus, Jul 16 2023
    
  • Python
    from sympy import factorint
    def A363919(n): return n**sum(map(lambda e:e-1,factorint(n).values())) # Chai Wah Wu, Jul 18 2023
  • SageMath
    def A363919(n):
        if n < 2: return 1
        return n^sum(p[1] - 1 for p in list(factor(n)))
    print([A363919(n) for n in srange(1, 69)])
    

Formula

a(n) = n^(Sum_{p in Factors(n)} (mult(p) - 1)), where Factors(n) is the integer factorization of n and mult(p) the multiplicity of the prime factor p.
a(n) = A363923(n) / A205959(n).
a(n) = n^A046660(n) = n^(A001222(n) - A001221(n)).
a(n) = 1 or divisible by at least one squared prime.
a(n) = 1 <=> n is squarefree (A005117).
a(n) != 1 <=> A056170(n) != 0.
a(n) = n <=> n = A060687(n - 1) for n >= 2.
a(2^n) = 2^(n*(n - 1)) = A053763(n).
a(n) <= 2^(lb(n)*(lb(n)-1)), where lb(n) = floor(log_{2}(n)).
a(n) is even <=> n = 2*A337945(n).
a(n) > 1 is odd <=> n = A053850(n).
n is prime => a(n) = 1. ('prime' means term of A000040).
n is prime product => a(n) = 1. ('prime product' means term of A144338).
n is proper prime power => a(n) is proper prime power. ('proper prime power' means term of A246547).
Moebius(a(n)) = [a(n) = 1], where [ ] denotes the Iverson bracket.

A381588 If n = Product (p_j^k_j) then a(n) = Product (lcm(p_j, k_j)), with a(1) = 1.

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 6, 6, 10, 11, 6, 13, 14, 15, 4, 17, 12, 19, 10, 21, 22, 23, 18, 10, 26, 3, 14, 29, 30, 31, 10, 33, 34, 35, 12, 37, 38, 39, 30, 41, 42, 43, 22, 30, 46, 47, 12, 14, 20, 51, 26, 53, 6, 55, 42, 57, 58, 59, 30, 61, 62, 42, 6, 65, 66, 67, 34, 69, 70, 71
Offset: 1

Views

Author

Paolo Xausa, Feb 28 2025

Keywords

Examples

			a(18) = 12 because 18 = 2^1*3^2, lcm(2,1) = 2, lcm(3,2) = 6 and 2*6 = 12.
a(300) = 30 because 300 = 2^2*3^1*5^2, lcm(2,2) = 2, lcm(3,1) = 3, lcm(5,2) = 10 and 2*3*10 = 60.
		

Crossrefs

Cf. A008473, A008477, A035306, A144338 (fixed points), A369008 (analogous for gcd).

Programs

  • Mathematica
    A381588[n_] := Times @@ LCM @@@ FactorInteger[n];
    Array[A381588, 100]
  • PARI
    a(n) = my(f=factor(n)); prod(i=1, #f~, lcm(f[i,1], f[i,2])); \\ Michel Marcus, Mar 02 2025

Formula

a(p) = p, for p prime.

A072490 Number of squarefree numbers (excluding 1) less than n.

Original entry on oeis.org

0, 0, 1, 2, 2, 3, 4, 5, 5, 5, 6, 7, 7, 8, 9, 10, 10, 11, 11, 12, 12, 13, 14, 15, 15, 15, 16, 16, 16, 17, 18, 19, 19, 20, 21, 22, 22, 23, 24, 25, 25, 26, 27, 28, 28, 28, 29, 30, 30, 30, 30, 31, 31, 32, 32, 33, 33, 34, 35, 36, 36, 37, 38, 38, 38, 39
Offset: 1

Views

Author

Amarnath Murthy, Jul 14 2002

Keywords

Examples

			a(10) = 5 as the squarefree numbers less than 10 are 2,3,5,6 and 7.
		

Crossrefs

Programs

  • PARI
    a(n) = sum(k=2, n-1, issquarefree(k)); \\ Michel Marcus, Sep 15 2019
    
  • Python
    from math import isqrt
    from sympy import mobius
    def A072490(n): return int(sum(mobius(k)*((n-1)//k**2) for k in range(1, isqrt(n-1)+1)))-1 if n>1 else 0 # Chai Wah Wu, Aug 19 2024

Formula

a(n) = A013928(n) - 1, n > 1.
G.f.: (x/(1 - x)) * Sum_{k>=2} mu(k)^2*x^k. - Ilya Gutkovskiy, Sep 14 2019

Extensions

Name clarified and more terms from Ilya Gutkovskiy, Sep 14 2019

A280169 Expansion of Product_{k>=2} 1/(1 - mu(2*k-1)^2*x^(2*k-1)), where mu() is the Moebius function (A008683).

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 6, 6, 8, 9, 10, 11, 13, 14, 17, 18, 21, 24, 26, 30, 33, 38, 42, 47, 53, 58, 65, 73, 80, 90, 99, 110, 122, 134, 149, 164, 181, 199, 220, 242, 266, 292, 321, 352, 386, 424, 463, 507, 554, 606, 662, 722, 788, 860, 936, 1020, 1111, 1208, 1314, 1428, 1553, 1685, 1829, 1984, 2152
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 27 2016

Keywords

Comments

Number of partitions of n into odd squarefree parts > 1.

Examples

			a(13) = 3 because we have [13], [7, 3, 3] and [5, 5, 3].
		

Crossrefs

Programs

  • Mathematica
    nmax = 76; CoefficientList[Series[Product[1/(1 - MoebiusMu[2 k - 1]^2 x^(2 k - 1)), {k, 2, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=2} 1/(1 - mu(2*k-1)^2*x^(2*k-1)).

A280197 Expansion of 1/(1 - Sum_{k>=2} mu(k)^2*x^k), where mu(k) is the Moebius function (A008683).

Original entry on oeis.org

1, 0, 1, 1, 1, 3, 3, 6, 8, 12, 20, 28, 45, 68, 102, 159, 238, 367, 557, 849, 1298, 1973, 3015, 4592, 7002, 10679, 16276, 24822, 37841, 57696, 87971, 134119, 204497, 311783, 475370, 724786, 1105053, 1684853, 2568837, 3916642, 5971587, 9104711, 13881698, 21165024, 32269721, 49200718, 75014949, 114373158, 174381511
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 28 2016

Keywords

Comments

Number of compositions (ordered partitions) into squarefree parts > 1 (A144338).

Examples

			a(5) = 3 because we have [5], [3, 2] and [2, 3].
		

Crossrefs

Programs

  • Maple
    N:= 100: # for a(0)..a(N)
    g:= 1/(1-add(numtheory:-mobius(k)^2*x^k, k=2..N)):
    S:= series(g,x,N+1):
    seq(coeff(S,x,j),j=0..N); # Robert Israel, Dec 29 2016
  • Mathematica
    nmax = 48; CoefficientList[Series[1/(1 - Sum[MoebiusMu[k]^2 x^k, {k, 2, nmax}]), {x, 0, nmax}], x]

Formula

G.f.: 1/(1 - Sum_{k>=2} mu(k)^2*x^k).

A033198 Discriminants of real quadratic number fields.

Original entry on oeis.org

8, 12, 5, 24, 28, 40, 44, 13, 56, 60, 17, 76, 21, 88, 92, 104, 29, 120, 124, 33, 136, 140, 37, 152, 156, 41, 168, 172, 184, 188, 204, 53, 220, 57, 232, 236, 61, 248, 65, 264, 268, 69, 280, 284, 73, 296, 77, 312, 316, 328, 332, 85, 344, 348, 89, 364, 93, 376, 380, 97
Offset: 1

Views

Author

Keywords

References

  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989, p. 103.

Crossrefs

Cf. A144338.

Programs

  • Maple
    with(numtheory): a:= proc(n) if issqrfree(n) then RETURN(piecewise(n mod 4=1,n,4*n)) else RETURN(NULL) fi: end: seq(a(n),n=2..150); # C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 03 2005
  • Mathematica
    Reap[For[n = 2, n <= 100, n++, If[SquareFreeQ[n], Sow[If[Mod[n, 4] == 1, n, 4 n]]]]][[2, 1]] (* Jean-François Alcover, Mar 22 2023 *)

Formula

For squarefree n >= 2, list n if n=1 mod 4 else 4n.

Extensions

More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 03 2005

A280716 Expansion of Product_{k>=2} (1 + mu(2*k-1)^2*x^(2*k-1)), where mu() is the Moebius function (A008683).

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 1, 3, 2, 3, 3, 3, 4, 4, 3, 5, 4, 5, 6, 4, 8, 6, 8, 8, 9, 11, 10, 11, 14, 13, 14, 15, 16, 19, 16, 20, 22, 22, 23, 26, 29, 30, 31, 35, 39, 38, 43, 44, 49, 50, 52, 58, 59, 64, 67, 71, 77, 82, 85, 93, 97, 107, 108, 117, 125, 131, 138, 143, 157, 162, 168, 179, 194, 199
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 07 2017

Keywords

Comments

Number of partitions of n into distinct odd squarefree parts > 1.

Examples

			a(18) = 3 because we have [15, 3], [13, 5] and [11, 7].
		

Crossrefs

Programs

  • Mathematica
    nmax = 84; CoefficientList[Series[Product[1 + MoebiusMu[2 k - 1]^2 x^(2 k - 1), {k, 2, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=2} (1 + mu(2*k-1)^2*x^(2*k-1)).

A284892 Numbers n > 1 such that all Hopf algebras of dimension n over algebraically closed fields of characteristic 0 are semisimple.

Original entry on oeis.org

2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41
Offset: 1

Views

Author

Keywords

Comments

All terms in this sequence are squarefree, but not all squarefree numbers are present: 1 and 30 are missing.

Crossrefs

Proper subsequence of A144338. A000040 and A128907 are subsequences.
Previous Showing 11-20 of 20 results.