cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A156275 a(n) = 10^n*Catalan(n).

Original entry on oeis.org

1, 10, 200, 5000, 140000, 4200000, 132000000, 4290000000, 143000000000, 4862000000000, 167960000000000, 5878600000000000, 208012000000000000, 7429000000000000000, 267444000000000000000, 9694845000000000000000, 353576700000000000000000
Offset: 0

Views

Author

Philippe Deléham, Feb 07 2009

Keywords

Comments

In general, for m >= 1, Sum_{k>=0} 1/(m^k * Catalan(k)) = 2*m*(8*m + 1) / (4*m - 1)^2 + 24 * m^2 * arcsin(1/(2*sqrt(m))) / (4*m - 1)^(5/2). - Vaclav Kotesovec, Nov 23 2021

Crossrefs

Programs

  • Magma
    [10^n*Catalan(n): n in [0..20]]; // Vincenzo Librandi, Jul 19 2011
  • Mathematica
    Table[10^n CatalanNumber[n],{n,0,20}] (* Harvey P. Dale, Mar 12 2013 *)

Formula

a(n) = 10^n*A000108(n).
From Gary W. Adamson, Jul 18 2011: (Start)
a(n) is the upper left term in M^n, M = an infinite square production matrix:
10, 10, 0, 0, 0, ...
10, 10, 10, 0, 0, ...
10, 10, 10, 10, 0, ...
10, 10, 10, 10, 10, ...
... (End)
E.g.f.: KummerM(1/2, 2, 40*x). - Peter Luschny, Aug 26 2012
G.f.: c(10*x) with c(x) the o.g.f. of A000108 (Catalan). - Philippe Deléham, Nov 15 2013
a(n) = Sum_{k=0..n} A085880(n,k)*9^k. - Philippe Deléham, Nov 15 2013
G.f.: 1/(1 - 10*x/(1 - 10*x/(1 - 10*x/(1 - ...)))), a continued fraction. - Ilya Gutkovskiy, Aug 08 2017
Sum_{n>=0} 1/a(n) = 180/169 + 800*arctan(1/sqrt(39)) / (507*sqrt(39)). - Vaclav Kotesovec, Nov 23 2021
Sum_{n>=0} (-1)^n/a(n) = 1580/1681 - 2400*arctanh(1/sqrt(41)) / (1681*sqrt(41)). - Amiram Eldar, Jan 25 2022
D-finite with recurrence (n+1)*a(n) +20*(-2*n+1)*a(n-1)=0. - R. J. Mathar, Mar 21 2022

Extensions

a(15) corrected by Vincenzo Librandi, Jul 19 2011

A354735 a(0) = a(1) = 1; a(n) = 4 * Sum_{k=0..n-2} a(k) * a(n-k-2).

Original entry on oeis.org

1, 1, 4, 8, 36, 96, 416, 1312, 5504, 19200, 79168, 293888, 1203712, 4648448, 19027968, 75411456, 309487616, 1248411648, 5144133632, 21011775488, 86971449344, 358540509184, 1490753372160, 6189315784704, 25843660619776, 107902536122368, 452308820819968, 1897178275512320
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 04 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = a[1] = 1; a[n_] := a[n] = 4 Sum[a[k] a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 27}]
    nmax = 27; CoefficientList[Series[(1 - Sqrt[1 - 16 x^2 (1 + x)])/(8 x^2), {x, 0, nmax}], x]

Formula

G.f. A(x) satisfies: A(x) = 1 + x + 4 * (x * A(x))^2.
G.f.: (1 - sqrt(1 - 16 * x^2 * (1 + x))) / (8 * x^2).
a(n) ~ sqrt((2+3*r)*(1+r)) / (sqrt(Pi) * n^(3/2) * r^n), where r = 2*cos(arccos(-5/32)/3)/3 - 1/3. - Vaclav Kotesovec, Jun 04 2022

A240558 a(n) = 2^n*n!/((floor(n/2)+1)*floor(n/2)!^2).

Original entry on oeis.org

1, 2, 4, 24, 32, 320, 320, 4480, 3584, 64512, 43008, 946176, 540672, 14057472, 7028736, 210862080, 93716480, 3186360320, 1274544128, 48432676864, 17611882496, 739699064832, 246566354944, 11342052327424, 3489862254592, 174493112729600, 49855175065600
Offset: 0

Views

Author

Peter Luschny, Apr 14 2014

Keywords

Crossrefs

Programs

  • Maple
    A240558 := n -> 2^n*n!/((iquo(n,2)+1)*iquo(n,2)!^2):
    seq(A240558(n), n=0..30);
  • Mathematica
    Table[SeriesCoefficient[((I*(2*x*(8*x+1)-1))/Sqrt[16*x^2-1]-2*x+1) /(8*x^2), {x,0,n}], {n,0,22}]
  • PARI
    x='x+O('x^50); Vec(round((I*(2*x*(8*x+1)-1))/sqrt(16*x^2-1)-2*x+1) /(8*x^2)) \\ G. C. Greubel, Apr 05 2017
  • Sage
    def A240558():
        x, n = 1, 1
        while True:
            yield x
            m = 2*n if is_odd(n) else 8/(n+2)
            x *= m
            n += 1
    a = A240558(); [next(a) for i in range(36)]
    

Formula

O.g.f.: ((i*(2*x*(8*x+1)-1))/sqrt(16*x^2-1)-2*x+1) /(8*x^2), where i=sqrt(-1).
For a recurrence see the Sage program.
a(n) = 2^n*A057977(n)
a(2*k) = A151403(k) = 2^k*A151374(k) = 4^k*A000108(k).
a(2*k+1) = A099045(k+1) = 2^k*A069723(k+2) = 4^k*A000984(k+1).
From Peter Luschny, Jan 31 2015: (Start)
a(n) = Sum_{k=0..n} A056040(n)*C(n,k)/(floor(n/2)+1).
a(n) = Sum_{k=0..n} n!*C(n,k)/((floor(n/2)+1)*(floor(n/2)!)^2).
a(n) = 2^n*n!*[x^n]((x+1)*hypergeom([],[2],x^2)).
a(n) ~ 2^(n+N)/((n+1)^*sqrt(Pi*(2*N+1))); here = 1 if n is even, 0 otherwise and N = n++1. (End)
Conjecture: -(n+2)*(n^2-5)*a(n) +8*(-2*n-1)*a(n-1) +16*(n-1)*(n^2+2*n-4)*a(n-2)=0. - R. J. Mathar, Jun 14 2016

A375393 a(0) = 1; a(n) = Sum_{k=0..n-1} (4*k+3) * a(k) * a(n-k-1).

Original entry on oeis.org

1, 3, 30, 483, 10314, 268686, 8167068, 281975715, 10863651474, 461227101210, 21377716429860, 1073816307452430, 58106804389870500, 3370330005649001532, 208635817503306332088, 13731856676157543219747, 957698874584753026878306, 70562301536089812703526370, 5477354759932929856218644820
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 09 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[(4 k + 3) a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 18}]
    nmax = 18; A[] = 0; Do[A[x] = 1 + 3 x A[x]^2 + 4 x^2 A'[x] A[x] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

Formula

G.f. A(x) satisfies: A(x) = 1 + 3 * x * A(x)^2 + 4 * x^2 * A'(x) * A(x).

A376087 a(0) = 1; a(n) = Sum_{k=0..n-1} (4*k+1) * a(k) * a(n-k-1).

Original entry on oeis.org

1, 1, 6, 65, 994, 19386, 456940, 12594465, 396969930, 14078044862, 554782989908, 24053551260186, 1138039204281236, 58353983394380500, 3223791843357228120, 190914111715994215905, 12065701995815379444954, 810602692757305194731094, 57688894099612173692496580
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 09 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[(4 k + 1) a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 18}]
    nmax = 18; A[] = 0; Do[A[x] = 1 + x A[x]^2 + 4 x^2 A'[x] A[x] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

Formula

G.f. A(x) satisfies: A(x) = 1 + x * A(x)^2 + 4 * x^2 * A'(x) * A(x).

A178657 Irregular triangle: the coefficient [x^k] of the polynomial (1-x)^(2*n-1) * Sum_{s>=0} A001263(n+2*s,2*s+1)*x^s in row n >= 1 and column k >= 0.

Original entry on oeis.org

1, 1, 3, 1, 15, 15, 1, 1, 43, 161, 105, 10, 1, 96, 855, 1680, 855, 96, 1, 1, 185, 3191, 13387, 17655, 7623, 945, 21, 1, 323, 9570, 72254, 188188, 188188, 72254, 9570, 323, 1, 1, 525, 24675, 302359, 1345605, 2499861, 2036125, 715725, 99414, 4410, 36, 1, 808
Offset: 1

Views

Author

Roger L. Bagula, Jun 01 2010

Keywords

Comments

Row sums are 1, 4, 32, 320, 3584, 43008, 540672, 7028736, 93716480, 1274544128, ... (see A151403, A052704).
The sequence is the Narayana number analog of A034839.

Examples

			1;
1, 3;
1, 15, 15, 1;
1, 43, 161, 105, 10;
1, 96, 855, 1680, 855, 96, 1;
1, 185, 3191, 13387, 17655, 7623, 945, 21;
1, 323, 9570, 72254, 188188, 188188, 72254, 9570, 323, 1;
1, 525, 24675, 302359, 1345605, 2499861, 2036125, 715725, 99414, 4410, 36;
1, 808, 56896, 1055320, 7329975, 22338816, 32152848, 22338816, 7329975, 1055320, 56896, 808, 1;
		

Crossrefs

Programs

  • Maple
    A001263 := proc(n,k) if n <=0 or k <=0 then 0 ; elif k > n then 0 ; else binomial(n-1,k-1)*binomial(n,k-1)/k ; end if; end proc:
    A178657 := proc(n,k) (1-x)^(2*n-1)*add(A001263(n+2*l,2*l+1)*x^l,l=0..20) ; expand(%) ; coeftayl(%,x=0,k) ; end proc: # R. J. Mathar, Aug 30 2011
  • Mathematica
    p[x_, n_] = (1 - x)^(2*n - 1)*Sum[(Binomial[2*k + n, 2*k] Binomial[ 2*k + n, 1 + 2*k]/(2*k + n))*x^k, {k, 0, Infinity}];
    Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 2, 10}];
    Flatten[%]

A212694 Number of 2-colored Dyck n-paths with up steps (U, u), down steps (D, d), and avoiding UU and DD.

Original entry on oeis.org

1, 4, 25, 197, 1745, 16580, 165115, 1700809, 17971466, 193710087, 2121585340, 23543198588, 264138223362, 2991130956918, 34143543312267, 392458689992396, 4538574332686469, 52768896995910303, 616471818881678085, 7232838546289017796, 85188401983572928395
Offset: 0

Views

Author

Alois P. Heinz, May 23 2012

Keywords

Comments

Upper case letters denote one color and lower case letters the other.

Examples

			a(1) = 4: ud, Ud, uD, UD.
a(2) = 25: uudd, Uudd, uUdd, uuDd, UuDd, uUDd, udud, Udud, uDud, UDud, udUd, UdUd, uDUd, UDUd, uudD, UudD, uUdD, uduD, UduD, uDuD, UDuD, udUD, UdUD, uDUD, UDUD.
		

Crossrefs

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(x=0, 1,
          `if`(y<1  , 0, b(x-1, y-1, 0)+`if`(t=1, 0, b(x-1, y-1, 1)))+
          `if`(x b(2*n, 0$2):
    seq(a(n), n=0..30);
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = If[x == 0, 1, If[y < 1, 0, b[x - 1, y - 1, 0] + If[t == 1, 0, b[x - 1, y - 1, 1]]] + If[x < y + 2, 0, b[x - 1, y + 1, 0] + If[t == 2, 0, b[x - 1, y + 1, 2]]]];
    a[n_] := b[2n, 0, 0];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 02 2018, from Maple *)

Formula

Recurrence: 5*n*(n+1)*(n+2)*(11856*n^6 - 462048*n^5 + 6376819*n^4 - 42412433*n^3 + 147659510*n^2 - 260432089*n + 184927095)*a(n) = n*(n+1)*(1683552*n^7 - 66428880*n^6 + 937628962*n^5 - 6466755025*n^4 + 23922419618*n^3 - 47274340850*n^2 + 44490285903*n - 13108829940)*a(n-1) - n*(14310192*n^8 - 585624672*n^7 + 8802419365*n^6 - 66744441981*n^5 + 284660409448*n^4 - 703230360993*n^3 + 976943147665*n^2 - 682900257024*n + 175305383460)*a(n-2) + 2*(17238624*n^9 - 746332752*n^8 + 12295273466*n^7 - 105941663163*n^6 + 537013083761*n^5 - 1677467513328*n^4 + 3243096592679*n^3 - 3743377415442*n^2 + 2332897216785*n - 592736810400)*a(n-3) - (37974768*n^9 - 1728832752*n^8 + 30714335273*n^7 - 291055104422*n^6 + 1652510618897*n^5 - 5890634883203*n^4 + 13267453974662*n^3 - 18291224811263*n^2 + 14073816074160*n - 4638445144200)*a(n-4) + (23308896*n^9 - 1108835760*n^8 + 20950004098*n^7 - 213362099351*n^6 + 1311302140489*n^5 - 5085585201440*n^4 + 12508042515937*n^3 - 18889708965719*n^2 + 15984167161110*n - 5834960787600)*a(n-5) - (8927568*n^9 - 442319616*n^8 + 8817227331*n^7 - 95321285525*n^6 + 623567997102*n^5 - 2575734547859*n^4 + 6742249614729*n^3 - 10822975984520*n^2 + 9730758446550*n - 3782772932400)*a(n-6) + 4*(2*n - 13)*(248976*n^8 - 11244288*n^7 + 197289135*n^6 - 1812121625*n^5 + 9661474889*n^4 - 30841990357*n^3 + 57959845045*n^2 - 59304520365*n + 25796647800)*a(n-7) - 4*(n-7)*(2*n - 15)*(2*n - 13)*(11856*n^6 - 390912*n^5 + 4244419*n^4 - 21288517*n^3 + 54240485*n^2 - 69082196*n + 35668710)*a(n-8). - Vaclav Kotesovec, Jul 16 2014
Limit n->infinity a(n)^(1/n) = (13+3*sqrt(17))/2 = 12.68465843842649... . - Vaclav Kotesovec, Jul 16 2014

A380119 Triangle read by rows: T(n, k) is the number of walks of length 2*n on the N X N grid with unit steps in all four directions (NSWE) starting at (0, 0). k is the common value of the x- and the y-coordinate of the endpoint of the walk.

Original entry on oeis.org

1, 2, 2, 10, 16, 6, 70, 140, 90, 20, 588, 1344, 1134, 448, 70, 5544, 13860, 13860, 7392, 2100, 252, 56628, 151008, 169884, 109824, 42900, 9504, 924, 613470, 1717716, 2108106, 1561560, 750750, 231660, 42042, 3432, 6952660, 20225920, 26546520, 21781760, 12155000, 4667520, 1191190, 183040, 12870
Offset: 0

Views

Author

Peter Luschny, Jan 19 2025

Keywords

Examples

			The triangle starts:
  [0] [      1]
  [1] [      2,        2]
  [2] [     10,       16,        6]
  [3] [     70,      140,       90,      20]
  [4] [    588,     1344,     1134,      448,       70]
  [5] [   5544,    13860,    13860,     7392,     2100,     252]
  [6] [  56628,   151008,   169884,   109824,    42900,    9504,     924]
  [7] [ 613470,  1717716,  2108106,  1561560,   750750,  231660,   42042,   3432]
  [8] [6952660, 20225920, 26546520, 21781760, 12155000, 4667520, 1191190, 183040, 12870]
.
For n = 2 the walks depending on the x-coordinate of the endpoint are:
W(x=0) = {NNSS,NSNS,NSWE,NWSE,NWES,WNSE,WNES,WWEE,WENS,WEWE},
W(x=1) = {NNSW,NNWS,NSNW,NSWN,NWNS,NWSN,NWWE,NWEW,WNNS,WNSN,WNWE,WNEW,WWNE,WWEN,WENW,WEWN},
W(x=2) = {NNWW,NWNW,NWWN,WNNW,WNWN,WWNN}.
		

Crossrefs

Related triangles: A380120.
Cf. A005568 (column 0), A000984 (main diagonal), A253487 (sub diagonal), A151403 (row sums).

Programs

  • Python
    from dataclasses import dataclass
    @dataclass
    class Walk: s: str = ""; x: int = 0; y: int = 0
    def Trow(n: int) -> list[int]:
        W = [Walk()]
        row = [0] * (n + 1)
        for w in W:
            if len(w.s) == 2*n:
                if w.x == w.y: row[w.y] += 1
            else:
                for s in "NSWE":
                    x = y = 0
                    match s:
                        case "W": x =  1
                        case "E": x = -1
                        case "N": y =  1
                        case "S": y = -1
                        case _  : pass
                    if (w.y + y >= 0) and (w.x + x >= 0):
                        W.append(Walk(w.s + s, w.x + x, w.y + y))
        return row
    for n in range(6): print(Trow(n))

A243312 The total T(d,n) of expressions with n instances of a digit d between 6 and 9 (and using the four arithmetic operators) which have a defined value when evaluated.

Original entry on oeis.org

1, 4, 31, 305, 3345, 39505, 487935, 6245118
Offset: 1

Views

Author

David Lyness, Jun 03 2014

Keywords

Comments

Bounded above by A151403 (which is equal to the *total* number of expressions, not just the ones that evaluate to a valid numeric value).
An expression has an undefined value when it contains a "division by zero" operation.
For 0 <= d <= 5 and d' > 5, it is possible that T(d,n) < T(d',n). See link below.
T(6,10) = 1097128463 < T(7,10) = 1097153419 < T(8,10) = 1097155971 < T(9,10) = 1097157195. - Hiroaki Yamanouchi, Oct 01 2014

Examples

			For n = 2 and digit d != 0, there are four possible expressions:
(d + d)
(d - d)
(d * d)
(d / d)
None of these include a "division by zero" operation, and so all four of the above expressions can be considered valid. Therefore, T(d, 2) = 4 for d > 0.
		

Programs

  • Python
    # coding=utf-8
     
    import itertools
     
     
    def all_expressions(generic_expression, operation_combinations):
        """
        Merges a source expression and combinations of binary operators to generate a list of all possible expressions.
        @param ((str,)) operation_combinations: all combinations of binary operators to consider
        @param str generic_expression: source expression with placeholder binary operators
        @rtype: (str,)
        """
        expression_combinations = []
        for combination in operation_combinations:
            expression_combinations.append(generic_expression.format(*combination))
        return expression_combinations
     
     
    def all_bracketings(expr):
        """
        Generates all possible permutations of parentheses for an expression.
        @param str expr: the non-bracketed source expression
        @rtype: str
        """
        if len(expr) == 1:
            yield expr
        else:
            for i in range(1, len(expr), 2):
                for left_expr in all_bracketings(expr[:i]):
                    for right_expr in all_bracketings(expr[i + 1:]):
                        yield "({}{}{})".format(left_expr, expr[i], right_expr)
     
     
    def num_valid_expressions(num_digits):
        """Perform all calculations with the given operations and in the range of digits specified.
        @param int num_digits: the number of digits in the expression
        @rtype: int
        """
        operations = ["+", "-", "*", "/"]
        digit = 9
        operation_iterable = itertools.product(*[operations] * (num_digits - 1))
        operation_combinations = []
        valid_expression_count = 0
        template = " ".join(str(digit) * num_digits)
        for operation in operation_iterable:
            operation_combinations.append(operation)
        for bracketed_expression in all_bracketings(template):
            for expression in all_expressions(bracketed_expression.replace(" ", "{}"), operation_combinations):
                try:
                    eval(expression)
                    valid_expression_count += 1
                except ZeroDivisionError:
                    pass
        return valid_expression_count
     
     
    if _name_ == "_main_":
        min_num_digits = 1
        max_num_digits = 6
        operation_set = ["+", "-", "*", "/"]
        for num in range(min_num_digits, max_num_digits + 1):
            print(num_valid_expressions(num))

A338415 Triangle read by rows: T(n,m) = C(n+m+1,n)*C(2*n-m,n)*C(3*n+1,n)*C(4*n+2,2*m+1)/(2*(n+1)*C(2*n,n)*C(2*n+2*m+2,2*n)).

Original entry on oeis.org

1, 2, 2, 7, 18, 7, 30, 130, 130, 30, 143, 884, 1530, 884, 143, 728, 5880, 14896, 14896, 5880, 728, 3876, 38760, 131100, 193200, 131100, 38760, 3876, 21318, 254562, 1085238, 2153250, 2153250, 1085238, 254562, 21318, 120175, 1669800, 8627300, 21755800, 29370330, 21755800, 8627300, 1669800, 120175
Offset: 0

Views

Author

Vladimir Kruchinin, Oct 25 2020

Keywords

Examples

			1,
2, 2,
7, 18, 7,
30, 130, 130, 30,
143, 884, 1530, 884, 143
		

Crossrefs

Programs

  • Maxima
    A(x,y) := ((x*(27*y^4-108*y^3+162*y^2+(-108)*y+27)-2*y^3+66*y^2+66*y-2)/(54*y^6-324*y^5+810*y^4+(-1080)*y^3+810*y^2+(-324)*y+54)+sqrt(27*x^2*y^4+((-108)*x^2-4*x)*y^3+(162*x^2+132*x)*y^2+((-108)*x^2+132*x-16)*y+27*x^2+(-4)*x)/(2*3^(3/2)*(y-1)^4))^(1/3)+(y^2+14*y+1)/((9*y^4-36*y^3+54*y^2+(-36)*y+9)*((x*(27*y^4-108*y^3+162*y^2+(-108)*y+27)-2*y^3+66*y^2+66*y-2)/(54*y^6-324*y^5+810*y^4+(-1080)*y^3+810*y^2+(-324)*y+54)+sqrt(27*x^2*y^4+((-108)*x^2-4*x)*y^3+(162*x^2+132*x)*y^2+((-108)*x^2+132*x-16)*y+27*x^2+(-4)*x)/(2*3^(3/2)*(y-1)^4))^(1/3))+(2*y+2)/(3*(y^2-2*y+1));
    taylor(A(x,y),x,0,7,y,0,7);
    
  • Maxima
    T(n,m):=(binomial(n+m+1,n)*binomial(2*n-m,n)*binomial(3*n+1,n)* binomial(4*n+2,2*m+1))/((2*n+2)*binomial(2*n,n)*binomial(2*n+2*m+2,2*n));

Formula

G.f. satisfies A(x,y)=x/(A(x,y)^2*y^2-2*A(x,y)^2*y-2*A(x,y)*y+A(x,y)^2-2*A(x,y)+1).
A(x,y) = ((x*(27*y^4-108*y^3+162*y^2+(-108)*y+27)-2*y^3+66*y^2+66*y-2)/(54*y^6-324*y^5+810*y^4+(-1080)*y^3+810*y^2+(-324)*y+54)+sqrt(27*x^2*y^4+((-108)*x^2-4*x)*y^3+(162*x^2+132*x)*y^2+((-108)*x^2+132*x-16)*y+27*x^2+(-4)*x)/(2*3^(3/2)*(y-1)^4))^(1/3)+(y^2+14*y+1)/((9*y^4-36*y^3+54*y^2+(-36)*y+9)*((x*(27*y^4-108*y^3+162*y^2+(-108)*y+27)-2*y^3+66*y^2+66*y-2)/(54*y^6-324*y^5+810*y^4+(-1080)*y^3+810*y^2+(-324)*y+54)+sqrt(27*x^2*y^4+((-108)*x^2-4*x)*y^3+(162*x^2+132*x)*y^2+((-108)*x^2+132*x-16)*y+27*x^2+(-4)*x)/(2*3^(3/2)*(y-1)^4))^(1/3))+(2*y+2)/(3*(y^2-2*y+1)).
Previous Showing 11-20 of 21 results. Next