cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 132 results. Next

A351554 Numbers k such that there are no odd prime factors p of sigma(k) such that p does not divide A003961(k) and the valuation(k, p) is different from valuation(sigma(k), p), where A003961 is fully multiplicative with a(p) = nextprime(p), and sigma is the sum of divisors function.

Original entry on oeis.org

1, 2, 3, 6, 7, 10, 14, 15, 20, 21, 22, 24, 27, 28, 30, 31, 33, 34, 40, 42, 46, 54, 57, 60, 62, 66, 69, 70, 84, 87, 91, 93, 94, 102, 105, 106, 110, 114, 120, 127, 130, 138, 140, 141, 142, 154, 160, 168, 170, 174, 177, 182, 186, 189, 190, 195, 198, 210, 214, 216, 217, 220, 224, 230, 231, 237, 238, 254, 260, 264, 270, 273
Offset: 1

Views

Author

Antti Karttunen, Feb 16 2022

Keywords

Comments

Numbers k for which A351555(k) = 0. This is a necessary condition for the terms of A349169 and of A349745, therefore they are subsequences of this sequence.
All six known 3-perfect numbers (A005820) are included in this sequence.
All 65 known 5-multiperfects (A046060) are included in this sequence.
Moreover, all multiperfect numbers (A007691) seem to be in this sequence.
From Antti Karttunen, Aug 27 2025: (Start)
Multiperfect number m is included in this sequence only if its abundancy sigma(m)/m has only such odd prime factors p that prevprime(p) [A151799] divides m for each p. E.g., all 65 known 5-multiperfects are multiples of 3, and all known terms of A005820 and A046061 are even.
This sequence contains natural numbers k such that the odd primes in the prime factorization of sigma(k) have the same valuation there as in k, except that the primes in A003961(k) [or equally in A003961(A007947(k))] stand for "don't care primes", that are "masked off" from the comparison.
(End)

Crossrefs

Positions of zeros in A351555.
Subsequences: A000396, A351553 (even terms), A386430 (odd terms), A351551, A349169, A349745, A387160 (terms of the form prime * m^2), also these, at least all the currently (Feb 2022) known terms: A005820, A007691, A046060.

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A351555(n) = { my(s=sigma(n),f=factor(s),u=A003961(n)); sum(k=1,#f~,if((f[k,1]%2) && 0!=(u%f[k,1]), (valuation(n,f[k,1])!=f[k,2]), 0)); };
    isA351554(n) = (0==A351555(n));
    
  • PARI
    isA351554(n) = { my(sh=A351546(n),f=factor(sh)); for(i=1,#f~, if((f[i,1]%2)&&valuation(n,f[i,1])!=f[i,2],return(0))); (1); }; \\ Uses also program given in A351546.

Extensions

Definition corrected by Antti Karttunen, Aug 22 2025

A117825 Distance from n-th highly composite number (cf. A002182) to nearest prime.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 11, 13, 1, 11, 1, 17, 1, 1, 13, 13, 1, 1, 17, 1, 17, 1, 1, 17, 17, 17, 1, 1, 19, 37, 37, 1, 17, 23, 1, 29, 1, 1, 19, 1, 19, 23, 1, 19, 31, 1, 19, 1, 1, 1, 1, 23, 1, 29, 23, 23, 1, 23, 71, 37, 1, 1, 31, 1, 23, 53, 1, 31
Offset: 1

Views

Author

Bill McEachen, May 01 2006

Keywords

Comments

a) Conjecture: entries > 1 will always be prime. The entry will be larger than the largest prime factor of the highly composite number.
b) Will 1 always be the most common entry?
c) While a prime may always be located close to each highly composite number, is the converse false?
d) Is there always a prime between successive highly composite numbers?
From Antti Karttunen, Feb 26 2019: (Start)
The second sentence of point (a) follows as both gcd(n, A151799(n)) = 1 and gcd(A151800(n), n) = 1 for all n > 2 and the fact that the highly composite numbers are products of primorials, A002110 (with the least coprime prime > the largest prime factor). See also the conjectures and notes in A129912 and A141345. (End)

Examples

			a(5) = abs(12-11) = 1.
		

Crossrefs

Sequences tied to conjecture a): A228943, A228945.
Cf. also A005235, A060270.

Programs

Formula

a(1) = 1; for n > 1, a(n) = min(A141345(n), A324385(n)). - Antti Karttunen, Feb 26 2019

Extensions

More terms from Don Reble, May 02 2006

A285702 a(n) = A000010(A064216(n)).

Original entry on oeis.org

1, 1, 2, 4, 2, 6, 10, 2, 12, 16, 4, 18, 6, 4, 22, 28, 6, 8, 30, 10, 36, 40, 4, 42, 20, 12, 46, 12, 16, 52, 58, 8, 20, 60, 18, 66, 70, 6, 24, 72, 8, 78, 24, 22, 82, 40, 28, 32, 88, 12, 96, 100, 8, 102, 106, 30, 108, 36, 20, 48, 42, 36, 18, 112, 40, 126, 64, 8, 130, 136, 42, 60, 44, 20, 138, 148, 24, 56, 150, 46, 72, 156, 12, 162, 110, 32, 166, 24, 52, 172, 178
Offset: 1

Views

Author

Antti Karttunen, Apr 26 2017

Keywords

Crossrefs

Odd bisection of the following sequences: A347115, A348045, A349127, A349128.

Programs

  • Mathematica
    Table[EulerPhi@ If[n == 1, 1, Apply[Times, FactorInteger[2 n - 1] /. {p_, e_} /; p > 2 :> NextPrime[p, -1]^e]], {n, 91}] (* Michael De Vlieger, Apr 26 2017 *)
  • Scheme
    (define (A285702 n) (A000010 (A064216 n)))

Formula

a(n) = A000010(A064216(n)).
Sum_{k=1..n} a(k) ~ c * n^2, where c = Product_{p prime} (p^3/((p+1)*(p^2-q(p)))) = 0.5366875995..., where q(p) = prevprime(p) (A151799) if p > 2 and q(2) = 1. - Amiram Eldar, Dec 21 2023

A007014 Largest prime <= Product prime(k).

Original entry on oeis.org

2, 5, 29, 199, 2309, 30029, 510481, 9699667, 223092827, 6469693189, 200560490057, 7420738134751, 304250263527209, 13082761331669941, 614889782588491343, 32589158477190044657, 1922760350154212638963, 117288381359406970983181, 7858321551080267055878989
Offset: 1

Views

Author

Keywords

Comments

A057705 contains terms of a(n) such that A002110(n) - a(n) = 1. -Michael De Vlieger, May 15 2017

Examples

			From _Michael De Vlieger_, May 15 2017: (Start)
a(1) = 2 since A002110(1) = 2. 2 is prime thus the largest prime <= 2 = 2.
a(2) = 5 since A002110(2) = 6. 5 is the largest prime <= 6. (End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Array[Abs@ NextPrime[Product[Prime@ i, {i, #}], -1] &, 14] (* Michael De Vlieger, May 15 2017 *)
  • PARI
    lista(n) = {prd = 1; for (i=1, n, prd *= prime(i); print1(precprime(prd), ", "););} \\ Michel Marcus, Jun 17 2013
    
  • PARI
    a(n)=precprime(prod(i=1,n,prime(i))) \\ Charles R Greathouse IV, Jun 17 2013

Formula

From Michael De Vlieger, May 15 2017: (Start)
a(n) = prime(A000849(n)).
a(n) = A151799(A002110(n)). (End)

Extensions

Corrected by Jud McCranie, Jan 03 2001
More terms from Michael De Vlieger, May 15 2017

A051438 a(n) = prime(2^n - 1).

Original entry on oeis.org

2, 5, 17, 47, 127, 307, 709, 1613, 3659, 8147, 17851, 38867, 84011, 180497, 386083, 821603, 1742527, 3681113, 7754017, 16290041, 34136021, 71378551, 148948133, 310248233, 645155191, 1339484149, 2777105117, 5750079043, 11891268397, 24563311217, 50685770143
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = A181363(2^n - 1). - Reinhard Zumkeller, Oct 16 2010
a(n) = A000040(A000225(n)). - Michel Marcus, Nov 28 2017
a(n) = A151799(A033844(n)). - Amiram Eldar, Jun 30 2024

Extensions

More terms from Michael Lugo (mlugo(AT)thelabelguy.com), Dec 22 1999

A342661 a(n) = n * sigma(A064989(n)), where A064989 is multiplicative with a(2^e) = 1 and a(p^e) = prevprime(p)^e for odd primes p, and sigma gives the sum of the divisors of its argument.

Original entry on oeis.org

1, 2, 9, 4, 20, 18, 42, 8, 63, 40, 88, 36, 156, 84, 180, 16, 238, 126, 342, 80, 378, 176, 460, 72, 325, 312, 405, 168, 696, 360, 930, 32, 792, 476, 840, 252, 1184, 684, 1404, 160, 1558, 756, 1806, 352, 1260, 920, 2068, 144, 1519, 650, 2142, 624, 2544, 810, 1760, 336, 3078, 1392, 3186, 720, 3660, 1860, 2646, 64, 3120
Offset: 1

Views

Author

Antti Karttunen, Mar 23 2021

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[p == 2, 2^e, Module[{q = NextPrime[p, -1]}, p^e*(q^(e + 1) - 1)/(q - 1)]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 24 2022 *)
  • PARI
    A064989(n) = { my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f) };
    A326041(n) = sigma(A064989(n));
    A342661(n) = (n*A326041(n));

Formula

Multiplicative with a(p^e) = (p^e) * (q^(e+1)-1)/(q-1), where q = 1 for p = 2, and for odd primes p, q = A151799(p), i.e., the previous prime.
a(n) = n * A326041(n) = n * A000203(A064989(n)).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (2/9) * Product_{p prime > 2} (p^3/((p+1)*(p^2-prevprime(p)))) = 0.1815217..., where prevprime is A151799. - Amiram Eldar, Dec 24 2022

A057470 Let prime(i) = i-th prime, let twin(n) = (P,Q) be n-th pair of twin primes; sequence gives prime(P).

Original entry on oeis.org

5, 11, 31, 59, 109, 179, 277, 353, 547, 587, 773, 859, 1063, 1153, 1201, 1433, 1499, 1723, 1823, 2063, 2341, 2897, 3001, 3259, 3733, 4133, 4397, 4549, 4759, 4933, 6217, 6311, 6353, 6653, 6841, 8101, 8221, 8377, 8513, 8747, 9293, 9973, 10433, 10559
Offset: 1

Views

Author

Cino Hilliard, Sep 10 2000

Keywords

Examples

			The 3rd pair of twin primes is twin(3) = (11,13), so a(3) = prime(11) = 31.
		

Crossrefs

Programs

  • Mathematica
    Prime/@Select[Partition[Prime[Range[300]],2,1],#[[2]]-#[[1]]==2&][[;;,1]] (* Harvey P. Dale, May 21 2023 *)

Formula

From Amiram Eldar, Feb 14 2025: (Start)
a(n) = prime(A001359(n)).
a(n) = A151799(A151799(A057473(n))). (End)

Extensions

More terms from James Sellers, Sep 11 2000

A326041 a(n) = sigma(A064989(n)).

Original entry on oeis.org

1, 1, 3, 1, 4, 3, 6, 1, 7, 4, 8, 3, 12, 6, 12, 1, 14, 7, 18, 4, 18, 8, 20, 3, 13, 12, 15, 6, 24, 12, 30, 1, 24, 14, 24, 7, 32, 18, 36, 4, 38, 18, 42, 8, 28, 20, 44, 3, 31, 13, 42, 12, 48, 15, 32, 6, 54, 24, 54, 12, 60, 30, 42, 1, 48, 24, 62, 14, 60, 24, 68, 7, 72, 32, 39, 18, 48, 36, 74, 4, 31, 38, 80, 18, 56, 42, 72, 8
Offset: 1

Views

Author

Antti Karttunen, Jun 03 2019

Keywords

Comments

The odd bisection is A285703, the even bisection is the sequence itself.

Crossrefs

Programs

  • PARI
    A326041(n) = if(1==n,n, my(f = factor(n)); prod(i=1, #f~, if(2==f[i,1],1,((precprime(f[i,1]-1)^(1+f[i,2]))-1)/(precprime(f[i,1]-1)-1))));
    
  • PARI
    A064989(n) = { my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f) };
    A326041(n) = sigma(A064989(n));

Formula

Multiplicative with a(2^e) = 1, and for odd primes p, a(p^e) = (q^(e+1)-1)/(q-1), where q = A151799(p).
a(n) = A000203(A064989(n)).
a(2n) = a(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/3) * Product_{p prime} (p^3/((p+1)*(p^2-q(p)))) = 0.2722825585..., where q(p) = prevprime(p) (A151799) if p > 2 and q(2) = 1. - Amiram Eldar, Dec 21 2023

A342662 a(n) = sigma(n) * A064989(n), where A064989 is multiplicative with a(2^e) = 1 and a(p^e) = prevprime(p)^e for odd primes p, and sigma is the sum of the divisors of n.

Original entry on oeis.org

1, 3, 8, 7, 18, 24, 40, 15, 52, 54, 84, 56, 154, 120, 144, 31, 234, 156, 340, 126, 320, 252, 456, 120, 279, 462, 320, 280, 690, 432, 928, 63, 672, 702, 720, 364, 1178, 1020, 1232, 270, 1554, 960, 1804, 588, 936, 1368, 2064, 248, 1425, 837, 1872, 1078, 2538, 960, 1512, 600, 2720, 2070, 3180, 1008, 3658, 2784, 2080, 127
Offset: 1

Views

Author

Antti Karttunen, Mar 23 2021

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[p == 2, 1, NextPrime[p, -1]^e]*(p^(e + 1) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 24 2022 *)
  • PARI
    A064989(n) = { my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f) };
    A342662(n) = (sigma(n)*A064989(n));

Formula

Multiplicative with a(p^e) = q^e * (p^(e+1)-1)/(p-1), where q = 1 for p = 2, and for odd primes p, q = A151799(p), i.e., the previous prime.
a(n) = A000203(n) * A064989(n).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (16/63) * Product_{p prime > 2} p^4*(p-1)/((p^3-prevprime(p))*(p^2-prevprime(p))) = 0.1935405..., where prevprime is A151799. - Amiram Eldar, Dec 24 2022

A349127 Möbius transform of A064989, where A064989 is multiplicative with a(2^e) = 1 and a(p^e) = prevprime(p)^e for odd primes p.

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 4, 0, 2, 0, 6, 0, 10, 0, 2, 0, 12, 0, 16, 0, 4, 0, 18, 0, 6, 0, 4, 0, 22, 0, 28, 0, 6, 0, 8, 0, 30, 0, 10, 0, 36, 0, 40, 0, 4, 0, 42, 0, 20, 0, 12, 0, 46, 0, 12, 0, 16, 0, 52, 0, 58, 0, 8, 0, 20, 0, 60, 0, 18, 0, 66, 0, 70, 0, 6, 0, 24, 0, 72, 0, 8, 0, 78, 0, 24, 0, 22, 0, 82, 0, 40, 0, 28, 0, 32
Offset: 1

Views

Author

Antti Karttunen, Nov 13 2021

Keywords

Comments

The multiplicative definition of this sequence ("Möbius transform of prime shift towards lesser primes") differs from otherwise similarly defined A349128 (Euler phi applied to A064989) only in that here a(2^e) = 0, while A349128(2^e) = 1.
Compare the situation with A003961 ("prime shift towards larger primes"), where A003972(n) = A000010(A003961(n)) is also the Möbius transform of A003961.

Crossrefs

Agrees with A347115, A348045 and A349128 on odd numbers.
Cf. A000004, A285702 (even and odd bisection).

Programs

  • Mathematica
    f[p_, e_] := ((q = NextPrime[p, -1]) - 1)*q^(e - 1); a[1] = 1; a[n_] := If[EvenQ[n], 0, Times @@ f @@@ FactorInteger[n]]; Array[a, 100] (* Amiram Eldar, Nov 13 2021 *)
  • PARI
    A349127(n) = if(!(n%2),0, my(f = factor(n), q); prod(i=1, #f~, q = precprime(f[i,1]-1); (q-1)*(q^(f[i,2]-1))));
    
  • PARI
    A064989(n) = { my(f = factor(n)); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f); };
    A349127(n) = if(n%2, eulerphi(A064989(n)), 0);
    
  • PARI
    A349127(n) = sumdiv(n,d,moebius(n/d)*A064989(d));

Formula

Multiplicative with a(2^e) = 0, and for odd primes p, a(p^e) = (q-1)*q^(e-1), where q = prevprime(p), where prevprime is A151799.
If n is odd, then a(n) = A000010(A064989(n)), and if n is even, then a(n) = 0.
a(n) = Sum_{d|n} A008683(d) * A064989(n/d).
For all n >= 1, a(2n-1) = A347115(2n-1) = A348045(2n-1) = A349128(2n-1) = A285702(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (16/Pi^4) / Product_{p prime > 2} (1+1/p-q(p)/p^2-q(p)/p^3) = 0.1341718..., where q(p) = prevprime(p) = A151799(p). - Amiram Eldar, Dec 24 2022
Previous Showing 31-40 of 132 results. Next