A258935
Independence number of Keller graphs.
Original entry on oeis.org
4, 5, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589934592
Offset: 1
For G(2), a maximum independent set is {03,10,12,13,23}.
- W. Jarnicki, W. Myrvold, P. Saltzman, S. Wagon, Properties, proved and conjectured, of Keller, queen, and Mycielski graphs, Ars Mathematica Contemporanea 13:2 (2017) 427-460.
A260196
1, -3, followed by -1's.
Original entry on oeis.org
1, -3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
Offset: 0
-
first(m)=vector(m,i,i--;if(i>1,-1,if(i==0,1,if(i==1,-3)))) \\ Anders Hellström, Aug 28 2015
-
Vec(-(2*x^2-4*x+1)/(x-1) + O(x^100)) \\ Colin Barker, Sep 11 2015
A355580
Powerful 3-smooth numbers: numbers of the form 2^i * 3^j with i, j != 1.
Original entry on oeis.org
1, 4, 8, 9, 16, 27, 32, 36, 64, 72, 81, 108, 128, 144, 216, 243, 256, 288, 324, 432, 512, 576, 648, 729, 864, 972, 1024, 1152, 1296, 1728, 1944, 2048, 2187, 2304, 2592, 2916, 3456, 3888, 4096, 4608, 5184, 5832, 6561, 6912, 7776, 8192, 8748, 9216, 10368, 11664
Offset: 1
a(2) = 4 = 2^2.
a(3) = 8 = 2^3.
a(8)= 36 = 2^2 * 3^2.
-
q[n_] := Module[{e = IntegerExponent[n, {2, 3}]}, e[[1]] != 1 && e[[2]] != 1 && Times@@({2, 3}^e) == n]; Select[Range[12000], q]
-
is(n) = {my(f=factor(n)); n == 1 || (vecmax(f[,1]) <= 3 && vecmin(f[,2]) > 1)};
-
from itertools import count, takewhile
def aupto(lim):
pows2 = list(takewhile(lambda x: xMichael S. Branicky, Jul 08 2022
A358554
Least Matula-Goebel number of a rooted tree with n internal (non-leaf) nodes.
Original entry on oeis.org
1, 2, 3, 5, 11, 25, 55, 121, 275, 605, 1331, 3025, 6655, 14641, 33275, 73205
Offset: 1
The terms together with their corresponding rooted trees begin:
1: o
2: (o)
3: ((o))
5: (((o)))
11: ((((o))))
25: (((o))((o)))
55: (((o))(((o))))
121: ((((o)))(((o))))
275: (((o))((o))(((o))))
605: (((o))(((o)))(((o))))
1331: ((((o)))(((o)))(((o))))
3025: (((o))((o))(((o)))(((o))))
6655: (((o))(((o)))(((o)))(((o))))
14641: ((((o)))(((o)))(((o)))(((o))))
33275: (((o))((o))(((o)))(((o)))(((o))))
73205: (((o))(((o)))(((o)))(((o)))(((o))))
Positions of first appearances in
A342507.
The ordered version gives firsts of
A358553.
A034781 counts rooted trees by nodes and height.
A055277 counts rooted trees by nodes and leaves.
-
MGTree[n_]:=If[n==1,{},MGTree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
seq=Table[Count[MGTree[n],[_],{0,Infinity}],{n,1000}];
Table[Position[seq,n][[1,1]],{n,Union[seq]}]
A373901
Numbers m such that (m - k)^k modulo m is not equal to positive k <= m.
Original entry on oeis.org
1, 3, 4, 8, 11, 16, 17, 19, 32, 43, 59, 64, 67, 83, 107, 128, 131, 137, 179, 227, 251, 256, 347, 467, 512, 523, 563, 587, 683, 691, 787, 907, 971, 977, 1019, 1024, 1097, 1187, 1259, 1283, 1307, 1459, 1523, 1579, 1619, 1627, 1699, 1723, 1787, 1867, 1907, 1931, 1987, 2027, 2048
Offset: 1
1 is in this sequence because (1-1)^1 mod 1 = 0 != 1.
3 is in this sequence because
(3-1)^1 mod 3 = 2 != 1,
(3-2)^2 mod 3 = 1 != 2,
(3-3)^3 mod 3 = 0 != 3.
-
[m : m in [1..2^11] | #[k: k in [1..m] | (m-k)^k mod m eq k] eq 0];
-
isok(m) = for (k=1, m, if ((m - k)^k % m == k, return (0))); return(1); \\ Michel Marcus, Jun 30 2024
A381077
Sorted positions of first appearances in A380986 (product of prime indices minus product of distinct prime indices).
Original entry on oeis.org
1, 9, 25, 49, 63, 81, 99, 121, 125, 135, 169, 171, 245, 279, 289, 343, 361, 363, 369, 375, 387, 477, 529, 531, 575, 603, 625, 675, 711, 729, 747, 833, 841, 847, 873, 875, 891, 909, 961, 981, 1029, 1083, 1125, 1127, 1179, 1225, 1251, 1377, 1413, 1445, 1467
Offset: 1
The terms together with their prime indices begin:
1: {}
9: {2,2}
25: {3,3}
49: {4,4}
63: {2,2,4}
81: {2,2,2,2}
99: {2,2,5}
121: {5,5}
125: {3,3,3}
135: {2,2,2,3}
169: {6,6}
171: {2,2,8}
245: {3,4,4}
279: {2,2,11}
For factors instead of indices we have
A381076, sorted firsts of
A066503.
Sorted firsts of
A380986, which has nonzero terms at positions
A038838.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
q=Table[Times@@prix[n]-Times@@Union[prix[n]],{n,10000}];
Select[Range[Length[q]],FreeQ[Take[q,#-1],q[[#]]]&]
A144388
Triangle T(n,k) = binomial(n, k) + ((-1)^(n + k))*n*binomial(n - 1, k), T(0,0) = 1, read by rows, 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 3, 0, 1, -2, 9, 0, 1, 5, -8, 18, 0, 1, -4, 25, -20, 30, 0, 1, 7, -24, 75, -40, 45, 0, 1, -6, 49, -84, 175, -70, 63, 0, 1, 9, -48, 196, -224, 350, -112, 84, 0, 1, -8, 81, -216, 588, -504, 630, -168, 108, 0, 1, 11, -80, 405, -720, 1470, -1008, 1050, -240, 135, 0, 1
Offset: 0
Triangle begins:
1;
0, 1;
3, 0, 1;
-2, 9, 0, 1;
5, -8, 18, 0, 1;
-4, 25, -20, 30, 0, 1;
7, -24, 75, -40, 45, 0, 1;
-6, 49, -84, 175, -70, 63, 0, 1;
9, -48, 196, -224, 350, -112, 84, 0, 1;
-8, 81, -216, 588, -504, 630, -168, 108, 0, 1;
11, -80, 405, -720, 1470, -1008, 1050, -240, 135, 0, 1;
...
-
p[x_, n_] = (x + 1)^n - n*(x - 1)^(n - 1);
Table[CoefficientList[p[x, n], x], {n, 0, 10}] // Flatten
-
create_list(binomial(n, k) + ((-1)^(n + k))*n*binomial(n - 1, k),n , 0, 15, k, 0, n); /* Franck Maminirina Ramaharo, Jan 25 2019 */
A236967
Expansion of (1+3*x)^2/(1-3*x)^2.
Original entry on oeis.org
1, 12, 72, 324, 1296, 4860, 17496, 61236, 209952, 708588, 2361960, 7794468, 25509168, 82904796, 267846264, 860934420, 2754990144, 8781531084, 27894275208, 88331871492, 278942752080, 878669669052, 2761533245592, 8661172452084, 27113235502176, 84728860944300
Offset: 0
Cf. Expansion of (1 + k*x)^m/(1 - k*x)^m where the values of k,m are:
......|..m = 1..|..m = 2..|..m = 3..|..m = 4..|..m = 5..|..m = 6..|
-------------------------------------------------------------------
A281261
Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.
Original entry on oeis.org
1, 2, 2, 1, 5, 2, 5, 9, 2, 1, 15, 14, 2, 7, 35, 20, 2, 1, 28, 70, 27, 2, 9, 84, 126, 35, 2, 1, 45, 210, 210, 44, 2, 11, 165, 462, 330, 54, 2, 1, 66, 495, 924, 495, 65, 2, 13, 286, 1287, 1716, 715, 77, 2, 1, 91, 1001, 3003, 3003, 1001, 90, 2, 15, 455, 3003, 6435, 5005, 1365, 104, 2, 1, 120, 1820, 8008, 12870, 8008, 1820, 119, 2
Offset: 1
A(x;t) = x + (2*t+2)*x^2 + (t^2+5*t+2)*x^3 + (5*t^2+9*t+2)*x^4 + ...
Triangle starts:
n\k [1] [2] [3] [4] [5] [6] [7] [8]
[1] 1;
[2] 2, 2;
[3] 1, 5, 2;
[4] 5, 9, 2;
[5] 1, 15, 14, 2;
[6] 7, 35, 20, 2;
[7] 1, 28, 70, 27, 2;
[8] 9, 84, 126, 35, 2;
[9] 1, 45, 210, 210, 44, 2;
[10] 11, 165, 462, 330, 54, 2;
[11] 1, 66, 495, 924, 495, 65, 2;
[12] 13, 286, 1287, 1716, 715, 77, 2;
[13] 1, 91, 1001, 3003, 3003, 1001, 90, 2;
[14] 15, 455, 3003, 6435, 5005, 1365, 104, 2;
[15] ...
-
Reverse[CoefficientList[#, t]]& /@ CoefficientList[x*((1-t)*x^3 + (t^2 - 2*t - 1)*x^2 + (2*t - 1)*x + 1)/((t-1)*x^3 + (3-t)*x^2 - 3*x + 1) + O[x]^16, x] // Rest // Flatten (* Jean-François Alcover, Feb 18 2019 *)
-
N=16; x='x+O('x^N); concat(apply(p->Vec(p), Vec(Ser(x*((1-t)*x^3 + (t^2-2*t-1)*x^2 + (2*t-1)*x + 1)/((t-1)*x^3 + (3-t)*x^2 - 3*x + 1)))))
-
N = 14; concat(1, concat(vector(N, n, Vec(substpol(((1+t)^(n+2) + (1-t)^(n+2))/2 - t^2 + 1, t^2, t)))))
A380144
Sum of divisors d | k such that rad(d) = rad(k/d) where k is in A001694 and rad = A007947.
Original entry on oeis.org
1, 2, 6, 3, 14, 5, 12, 30, 6, 7, 62, 18, 39, 10, 24, 11, 30, 126, 42, 13, 14, 30, 72, 15, 120, 254, 90, 17, 78, 56, 19, 42, 70, 168, 21, 22, 60, 510, 23, 186, 155, 234, 60, 26, 363, 98, 150, 29, 360, 30, 31, 66, 240, 180, 1022, 33, 90, 378, 34, 35, 546, 84, 132
Offset: 1
a(1) = 1 since s(1) = 1 = 1*1. (We count divisor 1 only once, since it is a square root.)
a(2) = 2 since s(2) = 4 = 2*2, and omega(2) = omega(4). Alternatively, rad(2) = rad(4).
a(3) = 6 since s(3) = 8 = 2*4, omega(2) = omega(4) = omega(8), i.e., rad(2) = rad(4) = rad(8), and 2+4 = 6.
a(4) = 3 since s(4) = 9 = 3*3, and omega(3) = omega(9); rad(3) = rad(9).
a(5) = 14 since s(5) = 16 = 2*8 = 4*4; 2+4+8 = 14.
a(6) = 5 since s(6) = 25 = 5*5.
a(7) = 12 since s(7) = 27 = 3*9; 3+9 = 12.
a(8) = 30 since s(8) = 32 = 2*16 = 4*8; 2+4+8+16 = 30.
a(9) = 6 since s(9) = 36 = 6*6, etc.
-
nn = 1500;
s = Union@ Flatten@ Table[a^2*b^3, {b, Surd[nn, 3]}, {a, Sqrt[nn/b^3]}];
Map[Function[{n, r},
DivisorSum[n, # &, PrimeNu[#] == PrimeNu[n/#] == r &]] @@
{#, PrimeNu[#]} &, s]
Comments