cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A226971 Numbers k such that the sum of digits of k^7 is equal to k.

Original entry on oeis.org

0, 1, 18, 27, 31, 34, 43, 53, 58, 68
Offset: 1

Views

Author

Michel Lagneau, Jun 24 2013

Keywords

Comments

Only the ten integers listed have this property.

Examples

			a(3) = 18 because 18^7 = 612220032 and 6+1+2+2+2+0+0+3+2 = 18.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..80] | &+Intseq(n^7) eq n]; // Vincenzo Librandi, Feb 23 2015
    
  • Mathematica
    Select[Range[0, 100], #==Total[IntegerDigits[#^7]]&]
  • PARI
    isok(k)=sumdigits(k^7)==k \\ Patrick De Geest, Dec 13 2024
  • Sage
    [n for n in (0..70) if sum((n^7).digits()) == n] # Bruno Berselli, Feb 23 2015
    

A355370 Irregular triangle read by rows in which row n lists the numbers that divide the sum of the digits of their n-th powers.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 9, 1, 2, 3, 8, 9, 17, 18, 26, 27, 1, 3, 6, 7, 9, 22, 25, 28, 36, 1, 3, 9, 28, 35, 36, 46, 1, 2, 3, 7, 9, 18, 23, 45, 54, 64, 1, 3, 6, 9, 12, 15, 18, 27, 31, 34, 43, 53, 58, 68, 1, 3, 5, 6, 9, 15, 27, 46, 54, 63
Offset: 0

Views

Author

Mohammed Yaseen, Jun 30 2022

Keywords

Comments

For the proof of finiteness of rows, see comments in A309017.
It appears that the right column is A046000.

Examples

			Triangle begins:
  n=0:  1;
  n=1:  1, 2, 3,  4,  5,  6,  7,  8,  9;
  n=2:  1, 2, 3,  9;
  n=3:  1, 2, 3,  8,  9, 17, 18, 26, 27;
  n=4:  1, 3, 6,  7,  9, 22, 25, 28, 36;
  n=5:  1, 3, 9, 28, 35, 36, 46;
  n=6:  1, 2, 3,  7,  9, 18, 23, 45, 54, 64;
  n=7:  1, 3, 6,  9, 12, 15, 18, 27, 31, 34, 43,  53,  58, 68;
  n=8:  1, 3, 5,  6,  9, 15, 27, 46, 54, 63;
  n=9:  1, 2, 3,  6,  7,  9, 16, 27, 36, 54, 71,  81;
  n=10: 1, 3, 5,  6,  9, 18, 36, 82, 85, 94, 97, 106, 117;
  ...
		

Crossrefs

Row lengths are A355563.

Programs

  • Python
    def ok(k, n): return sum(map(int, str(k**n)))%k==0
    def row(n):
        d, lim = 1, 1
        while lim < n*9*d: d, lim = d+1, lim*10
        yield from [k for k in range(1, lim+1) if ok(k, n)]
    print([an for n in range(9) for an in row(n)]) # Michael S. Branicky, Jul 06 2022

A375343 Numbers which are the sixth powers of their digit sum.

Original entry on oeis.org

0, 1, 34012224, 8303765625, 24794911296, 68719476736
Offset: 1

Views

Author

René-Louis Clerc, Aug 12 2024

Keywords

Comments

Solutions can have no more than 13 digits, since (13*9)^6 < 10^13.

Examples

			68719476736 = (6+8+7+1+9+4+7+6+7+3+6)^6 = 64^6.
		

Crossrefs

Programs

  • PARI
    for (k=0, sqrtnint(10^13,6), if (k^6 == sumdigits(k^6)^6, print1(k^6, ", ")); )

Formula

{ k : k = A007953(k)^6}.
a(n) = A055577(n)^6. - Alois P. Heinz, Aug 24 2024

A379767 Triangle read by rows: row n lists numbers which are the n-th powers of their digit sum.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 81, 0, 1, 512, 4913, 5832, 17576, 19683, 0, 1, 2401, 234256, 390625, 614656, 1679616, 0, 1, 17210368, 52521875, 60466176, 205962976, 0, 1, 34012224, 8303765625, 24794911296, 68719476736, 0, 1, 612220032, 10460353203, 27512614111, 52523350144, 271818611107, 1174711139837, 2207984167552, 6722988818432
Offset: 1

Views

Author

René-Louis Clerc, Jan 02 2025

Keywords

Comments

Each row begins with 0, 1. Solutions can have no more than R(n) digits, since (R(n)*9)^n < 10^R(n), hence, for each n, there are a finite number of solutions (Property 1 and table 1 of Clerc).

Examples

			Triangle begins:
  1 | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9;
  2 | 0, 1, 81;
  3 | 0, 1, 512, 4913, 5832, 17576, 19683;
  4 | 0, 1, 2401, 234256, 390625, 614656, 1679616;
  5 | 0, 1, 17210368, 52521875, 60466176, 205962976;
  6 | 0, 1, 34012224, 8303765625, 24794911296, 68719476736;
  7 | 0, 1, 612220032, 10460353203, 27512614111, 52523350144, 271818611107, 1174711139837, 2207984167552, 6722988818432;
  8 | 0, 1, 20047612231936, 72301961339136, 248155780267521;
  9 | 0, 1, 3904305912313344, 45848500718449031, 150094635296999121;
  ...
		

Crossrefs

Rows 3..6 are A061209, A061210, A254000, A375343.
Row lengths are 1 + A046019(n).
Cf. A001014, A007953, A061211 (largest terms), A133509.
Cf. A152147.

Programs

  • PARI
    R(n) = for(j=2,oo, if((j*9)^n <10^j, return(j)));
    row(n) = my(L=List()); for (k=0, sqrtnint(10^R(n),n), if (k^n == sumdigits(k^n)^n, listput(L, k^n))); Vec(L)
Previous Showing 11-14 of 14 results.