cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A056296 Number of n-bead necklace structures using exactly three different colored beads.

Original entry on oeis.org

0, 0, 1, 2, 5, 18, 43, 126, 339, 946, 2591, 7254, 20125, 56450, 158355, 446618, 1262225, 3580686, 10181479, 29032254, 82968843, 237645250, 682014587, 1960981598, 5647919645, 16292761730, 47069104613, 136166703562, 394418199725, 1143822046786, 3320790074371
Offset: 1

Views

Author

Keywords

Comments

Turning over the necklace is not allowed. Colors may be permuted without changing the necklace structure.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 3 of A152175.

Programs

  • Mathematica
    Adn[d_, n_] := Adn[d, n] = If[1==n, DivisorSum[d, x^# &], Expand[Adn[d, 1] Adn[d, n-1] + D[Adn[d, n-1], x] x]];
    Table[Coefficient[DivisorSum[n, EulerPhi[#] Adn[#, n/#] &]/n , x, 3], {n, 1, 40}] (* Robert A. Russell, Feb 23 2018 *)
    Table[(1/n) DivisorSum[n, EulerPhi[#] Which[Divisible[#,6], StirlingS2[n/#+2,3] - StirlingS2[n/#+1,3], Divisible[#,3], StirlingS2[n/#+2,3] - 3 StirlingS2[n/#+1,3] + 3 StirlingS2[n/#,3], Divisible[#,2], 2 StirlingS2[n/#+1,3] - 2 StirlingS2[n/#,3], True, StirlingS2[n/#,3]] &],{n, 1, 40}] (* Robert A. Russell, May 29 2018*)
    mx = 40; Drop[CoefficientList[Series[-Sum[(EulerPhi[d] / d) Which[ Divisible[d, 6], Log[1 - 3x^d] - Log[1 - 2x^d], Divisible[d, 3] , (Log[1 - 3x^d] - Log[1 - 2x^d] + Log[1 - x^d]) / 2, Divisible[d, 2], (2 Log[1 - 3x^d] - 3 Log[1 - 2x^d]) / 3, True, (Log[1 - 3x^d] - 3Log[1 - 2x^d] + 3 Log[1 - x^d]) / 6], {d, 1, mx}], {x, 0, mx}], x], 1] (* Robert A. Russell, May 29 2018 *)

Formula

a(n) = A002076(n) - A000013(n).
From Robert A. Russell, May 29 2018: (Start)
a(n) = (1/n) * Sum_{d|n} phi(d) * ([d==0 mod 6] * (S2(n/d + 2, 3) - S2(n/d + 1, 3)) + [d==3 mod 6] * (S2(n/d + 2, 3) - 3*S2(n/d + 1, 3) + 3*S2(n/d, 3)) + [d==2 mod 6 | d==4 mod 6] * (2*S2(n/d + 1, 3) - 2*S2(n/d, 3)) + [d==1 mod 6 | d=5 mod 6] * S2(n/d, 3)), where S2(n,k) is the Stirling subset number, A008277.
G.f.: -Sum_{d>0} (phi(d) / d) * ([d==0 mod 6] * (log(1-3x^d) - log(1-x^d)) + [d==3 mod 6] * (log(1-3x^d) - log(1-2x^d) + log(1-x^d)) / 2 + [d==2 mod 6 | d==4 mod 6] * (2*log(1-3x^d) - 3*log(1-2x^d)) / 3 + [d==1 mod 6 | d=5 mod 6] * (log(1-3x^d) - 3*log(1-2x^d) + 3*log(1-x^d)) / 6).
(End)

A056297 Number of n-bead necklace structures using exactly four different colored beads.

Original entry on oeis.org

0, 0, 0, 1, 2, 13, 50, 221, 866, 3437, 13250, 51075, 194810, 742651, 2823766, 10738881, 40843370, 155494751, 592614050, 2261625725, 8643289534, 33080920607, 126797503250, 486710971595, 1870851589554, 7201014763285, 27752927359726, 107092397450897
Offset: 1

Views

Author

Keywords

Comments

Turning over the necklace is not allowed. Colors may be permuted without changing the necklace structure.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 4 of A152175.

Programs

  • Mathematica
    From Robert A. Russell, May 29 2018: (Start)
    Adn[d_, n_] := Adn[d, n] = If[1==n, DivisorSum[d, x^# &], Expand[Adn[d, 1] Adn[d, n-1] + D[Adn[d, n-1], x] x]];
    Table[Coefficient[DivisorSum[n, EulerPhi[#] Adn[#, n/#] &]/n , x, 4], {n, 1, 40}] (* after Gilbert and Riordan *)
    Table[(1/n) DivisorSum[n, EulerPhi[#] Which[ Divisible[#,12], StirlingS2[n/#+3,4] - 3 StirlingS2[n/#+2,4] + 2 StirlingS2[n/#+1,4], Divisible[#,6], 3 StirlingS2[n/#+2,4] - 9 StirlingS2[n/#+1,4] + 6 StirlingS2[n/#,4], Divisible[#,4], StirlingS2[n/#+3,4] - 5 StirlingS2[n/#+2,4] + 10 StirlingS2[n/#+1,4] - 8 StirlingS2[n/#,4], Divisible[#,3], 2 StirlingS2[n/#+2,4] - 8 StirlingS2[n/#+1,4] + 9 StirlingS2[n/#,4], Divisible[#,2], StirlingS2[n/#+2,4] - StirlingS2[n/#+1,4] - 2 StirlingS2[n/#,4], True, StirlingS2[n/#,4]] &],{n, 1, 40}]
    mx = 40; Drop[CoefficientList[Series[-Sum[(EulerPhi[d] / d) Which[ Divisible[d, 12], Log[1-4x^d] - Log[1-3x^d], Divisible[d, 6], (3 Log[1-4x^d] - 4 Log[1-3x^d]) / 4, Divisible[d, 4], (2 Log[1-4x^d] - 2 Log[1-3x^d] + Log[1-x^d]) / 3, Divisible[d, 3], (3 Log[1-4x^d] - 4 Log[1-3x^d] + 2 Log[1-2x^d] - 4 Log[1-x^d]) / 8, Divisible[d, 2], (5 Log[1-4x^d] - 8 Log[1-3x^d] + 4 Log[1-x^d]) / 12, True, (Log[1-4x^d] - 4 Log[1-3x^d] + 6 Log[1-2x^d] - 4 Log[1-x^d]) / 24], {d, 1, mx}], {x, 0, mx}], x], 1]
    (End)

Formula

a(n) = A056292(n) - A002076(n).
From Robert A. Russell, May 29 2018: (Start)
a(n) = (1/n) * Sum_{d|n} phi(d) * ([d==0 mod 12] * (S2(n/d + 3, 4) - 3*S2(n/d+2,4) + 2*S2(n/d + 1, 4)) + [d==6 mod 12] * (3*S2(n/d + 2, 4) - 9*S2(n/d + 1, 4) + 3*S2(n/d, 4)) + [d==4 mod 12 | d==8 mod 12] * (S2(n/d + 3, 4) - 5*S2(n/d + 2, 4) - 10*S2(n/d + 1, 4) - 8*S2(n/d, 4)) + [d==3 mod 12 | d=9 mod 12] * (2*S2(n/d + 2, 4) - 8*S2(n/d + 1, 4) - 2*S2(n/d,4)) + [d==2 mod 12 | d==10 mod 12] * (S2(n/d + 2, 4) - S2(n/d + 1, 4) + 9*S2(n/d, 4)) + [d mod 12 in {1,5,7,11}] * S2(n/d, 4)), where S2(n,k) is the Stirling subset number, A008277.
G.f.: -Sum_{d>0} (phi(d) / d) * ([d==0 mod 12] * (log(1-4x^d) - log(1-3x^d)) +[d==6 mod 12] * (3*log(1-4x^d) - 4*log(1-3x^d)) / 4 + [d==4 mod 12 | d==8 mod 12] * (2*log(1-4x^d) - 2*log(1-3x^d) + log(1-x^d)) / 3 + [d==3 mod 12 | d==9 mod 12] * (3*log(1-4x^d) - 4*log(1-3x^d) + 2*log(1-2x^d) - 4*log(1-x^d)) / 8 + [d==2 mod 12 | d=10 mod 12] * (5*log(1-4x^d) - 8*log(1-3x^d) + 4*log(1-x^d)) / 12 + [d mod 12 in {1,5,7,11}] * (log(1-4x^d) - 4*log(1-3x^d) + 6*log(1-2x^d) - 4*log(1-x^d)) / 24).
(End)

A327396 Triangle read by rows: T(n,k) is the number of n-bead necklace structures with beads of exactly k colors and no adjacent beads having the same color.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 3, 5, 2, 1, 0, 0, 3, 10, 8, 2, 1, 0, 1, 7, 33, 40, 18, 3, 1, 0, 0, 11, 83, 157, 104, 28, 3, 1, 0, 1, 19, 237, 650, 615, 246, 46, 4, 1, 0, 0, 31, 640, 2522, 3318, 1857, 495, 65, 4, 1, 0, 1, 63, 1817, 9888, 17594, 13311, 4911, 944, 97, 5, 1
Offset: 1

Views

Author

Andrew Howroyd, Oct 04 2019

Keywords

Comments

Permuting the colors does not change the necklace structure.
Equivalently, the number of k-block partitions of an n-set up to rotations where no block contains cyclically adjacent elements of the n-set.

Examples

			Triangle begins:
  0;
  0, 1;
  0, 0,  1;
  0, 1,  1,    1;
  0, 0,  1,    1,    1;
  0, 1,  3,    5,    2,     1;
  0, 0,  3,   10,    8,     2,     1;
  0, 1,  7,   33,   40,    18,     3,    1;
  0, 0, 11,   83,  157,   104,    28,    3,   1;
  0, 1, 19,  237,  650,   615,   246,   46,   4,  1;
  0, 0, 31,  640, 2522,  3318,  1857,  495,  65,  4, 1;
  0, 1, 63, 1817, 9888, 17594, 13311, 4911, 944, 97, 5, 1;
  ...
		

Crossrefs

Columns k=3..4 are A327397, A328130.
Partial row sums include A306888, A309673.
Row sums are A328150.

Programs

  • PARI
    R(n) = {Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, eulerphi(m) * subst(serlaplace((y-1)*exp(-x + O(x*x^(n\m))) - y + exp(-x + sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d)) ), x, x^m))/x), -n)]))}
    { my(A=R(12)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Oct 09 2019

A327693 Triangle read by rows: T(n,k) is the number of n-bead necklace structures which are not self-equivalent under a nonzero rotation using exactly k different colored beads.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 3, 5, 2, 0, 0, 4, 13, 9, 2, 0, 0, 9, 43, 50, 20, 3, 0, 0, 14, 116, 206, 127, 31, 3, 0, 0, 28, 335, 862, 772, 293, 51, 4, 0, 0, 48, 920, 3384, 4226, 2263, 580, 72, 4, 0, 0, 93, 2591, 13250, 22430, 16317, 5817, 1080, 105, 5, 0
Offset: 1

Views

Author

Andrew Howroyd, Sep 22 2019

Keywords

Comments

Permuting the colors does not change the structure.
The definition requires that a necklace must not be equivalent to itself by permutation of colors and rotation (except for identity rotation). For example the length 2 necklace AB is excluded because a rotation of 1 gives BA and permutation of colors brings back to AB.

Examples

			Triangle begins:
  1;
  0,  0;
  0,  1,   0;
  0,  1,   1,    0;
  0,  3,   5,    2,    0;
  0,  4,  13,    9,    2,    0;
  0,  9,  43,   50,   20,    3,   0;
  0, 14, 116,  206,  127,   31,   3,  0;
  0, 28, 335,  862,  772,  293,  51,  4, 0;
  0, 48, 920, 3384, 4226, 2263, 580, 72, 4, 0;
  ...
T(6, 4) = 9: {aaabcd, aabacd, aabcad, aabbcd, aabcbd, aabcdb, aacbdb, ababcd, abacbd}. Compared with A107424 the patterns {abacad, aacbbd, abcabd, acabdb} are excluded.
		

Crossrefs

Columns k=2..4 are A051841, A328740, A328741.
Row sums are A327696.
Partial row sums include A328742, A328743.
Cf. A324802 (not self-equivalent under reversal and rotations).

Programs

  • PARI
    R(n) = {Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, moebius(m) * subst(serlaplace(-1 + exp(sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d))), x, x^m))/x))]))}
    { my(A=R(12)); for(n=1, #A, print(A[n, 1..n])) }

A320748 Array read by antidiagonals: T(n,k) is the number of color patterns (set partitions) in an unoriented cycle of length n using k or fewer colors (subsets).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 3, 4, 1, 1, 2, 3, 6, 4, 1, 1, 2, 3, 7, 9, 8, 1, 1, 2, 3, 7, 11, 22, 9, 1, 1, 2, 3, 7, 12, 33, 40, 18, 1, 1, 2, 3, 7, 12, 36, 73, 100, 23, 1, 1, 2, 3, 7, 12, 37, 89, 237, 225, 44, 1, 1, 2, 3, 7, 12, 37, 92, 322, 703, 582, 63, 1, 1, 2, 3, 7, 12, 37, 93, 349, 1137, 2433, 1464, 122, 1, 1, 2, 3, 7, 12, 37, 93, 353, 1308, 4704, 8309, 3960, 190, 1, 1, 2, 3, 7, 12, 37, 93, 354, 1345, 5953, 19839, 30108, 10585, 362, 1
Offset: 1

Views

Author

Robert A. Russell, Oct 21 2018

Keywords

Comments

Two color patterns are equivalent if the colors are permuted. An unoriented cycle counts each chiral pair as one, i.e., they are equivalent.
Adnk[d,n,k] in Mathematica program is coefficient of x^k in A(d,n)(x) in Gilbert and Riordan reference.
T(n,k)=Pi_k(C_n) which is the number of non-equivalent partitions of the cycle on n vertices, with at most k parts. Two partitions P1 and P2 of a graph G are said to be equivalent if there is a nontrivial automorphism of G which maps P1 onto P2. - Bahman Ahmadi, Aug 21 2019
In other words, the number of n-bead bracelet structures using a maximum of k different colored beads. - Andrew Howroyd, Oct 30 2019

Examples

			Array begins with T(1,1):
1   1    1     1     1      1      1      1      1      1      1      1 ...
1   2    2     2     2      2      2      2      2      2      2      2 ...
1   2    3     3     3      3      3      3      3      3      3      3 ...
1   4    6     7     7      7      7      7      7      7      7      7 ...
1   4    9    11    12     12     12     12     12     12     12     12 ...
1   8   22    33    36     37     37     37     37     37     37     37 ...
1   9   40    73    89     92     93     93     93     93     93     93 ...
1  18  100   237   322    349    353    354    354    354    354    354 ...
1  23  225   703  1137   1308   1345   1349   1350   1350   1350   1350 ...
1  44  582  2433  4704   5953   6291   6345   6350   6351   6351   6351 ...
1  63 1464  8309 19839  28228  31284  31874  31944  31949  31950  31950 ...
1 122 3960 30108 88508 144587 171283 178190 179204 179300 179306 179307 ...
For T(7,2)=9, the patterns are AAAAAAB, AAAAABB, AAAABAB, AAAABBB, AAABAAB, AAABABB, AABAABB, AABABAB, and AAABABB; only the last is chiral, paired with AAABBAB.
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Partial row sums of A152176.
For increasing k, columns converge to A084708.
Cf. A320747 (oriented), A320742 (chiral), A305749 (achiral).

Programs

  • Mathematica
    Adnk[d_,n_,k_] := Adnk[d,n,k] = If[n>0 && k>0, Adnk[d,n-1,k]k + DivisorSum[d, Adnk[d,n-1,k-#]&], Boole[n == 0 && k == 0]]
    Ach[n_,k_] := Ach[n,k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)
    Table[Sum[(DivisorSum[n, EulerPhi[#] Adnk[#,n/#,j]&]/n + Ach[n,j])/2, {j,k-n+1}], {k,15}, {n,k}] // Flatten
  • PARI
    \\ Ach is A304972 and R is A152175 as square matrices.
    Ach(n)={my(M=matrix(n, n, i, k, i>=k)); for(i=3, n, for(k=2, n, M[i, k]=k*M[i-2, k] + M[i-2, k-1] + if(k>2, M[i-2, k-2]))); M}
    R(n)={Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, eulerphi(m) * subst(serlaplace(-1 + exp(sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d))), x, x^m))/x))]))}
    T(n)={my(M=(R(n) + Ach(n))/2); for(i=2, n, M[,i] += M[,i-1]); M}
    { my(A=T(12)); for(n=1, #A, print(A[n, ])) } \\ Andrew Howroyd, Nov 03 2019

Formula

T(n,k) = Sum_{j=1..k} Ach(n,j)/2 + (1/2n)*Sum_{d|n} phi(d)*A(d,n/d,j), where Ach(n,k) = [n>=0 & n<2 & n==k] + [n>1]*(k*Ach(n-2,k)+Ach(n-2,k-1)+Ach(n-2,k-2)) and A(d,n,k) = [n==0 & k==0] + [n>0 & k>0]*(k*A(d,n-1,k) + Sum_{j|d} A(d,n-1,k-j)).
T(n,k) = (A320747(n,k) + A305749(n,k)) / 2 = A320747(n,k) - A320742(n,k) = A320742(n,k) + A305749(n,k).

A056298 Number of n-bead necklace structures using exactly five different colored beads.

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 20, 136, 773, 4281, 22430, 115100, 577577, 2863227, 14051164, 68515514, 332514803, 1608800691, 7767857090, 37460388596, 180536313547, 869901397479, 4192038616700, 20208367895980
Offset: 1

Views

Author

Keywords

Comments

Turning over the necklace is not allowed. Colors may be permuted without changing the necklace structure.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 5 of A152175.

Programs

  • Mathematica
    From Robert A. Russell, May 29 2018: (Start)
    Adn[d_, n_] := Adn[d, n] = If[1==n, DivisorSum[d, x^# &],
      Expand[Adn[d, 1] Adn[d, n-1] + D[Adn[d, n-1], x] x]];
    Table[Coefficient[DivisorSum[n, EulerPhi[#] Adn[#, n/#] &]/n , x, 5],
      {n, 1, 40}] (* after Gilbert and Riordan *)
    Table[(1/n) DivisorSum[n, EulerPhi[#] Which[Divisible[#, 60], StirlingS2[n/#+4, 5] - 6 StirlingS2[n/#+3, 5] + 11 StirlingS2[n/#+2, 5] - 6 StirlingS2[n/#+1, 5], Divisible[#, 30], StirlingS2[n/#+4, 5] - 8 StirlingS2[n/#+3, 5] + 26 StirlingS2[n/#+2, 5] - 43 StirlingS2[n/#+1, 5] + 30 StirlingS2[n/#, 5], Divisible[#, 20], StirlingS2[n/#+4, 5] - 8 StirlingS2[n/#+3, 5] + 23 StirlingS2[n/#+2, 5] - 24 StirlingS2[n/#+1, 5], Divisible[#, 15], StirlingS2[n/#+4, 5] - 10 StirlingS2[n/#+3, 5] + 38 StirlingS2[n/#+2, 5] - 65 StirlingS2[n/#+1, 5] + 45 StirlingS2[n/#, 5], Divisible[#, 12], 4 StirlingS2[n/#+3, 5] - 24 StirlingS2[n/#+2, 5] + 44 StirlingS2[n/#+1, 5] - 24 StirlingS2[n/#, 5], Divisible[#, 10], StirlingS2[n/#+4, 5] - 10 StirlingS2[n/#+3, 5] + 38 StirlingS2[n/#+2, 5] - 61 StirlingS2[n/#+1, 5] + 30 StirlingS2[n/#, 5], Divisible[#, 6], 2 StirlingS2[n/#+3, 5] - 9 StirlingS2[n/#+2, 5] + 7 StirlingS2[n/#+1, 5] + 6 StirlingS2[n/#, 5], Divisible[#, 5], StirlingS2[n/#+4, 5] - 10 StirlingS2[n/#+3, 5] + 35 StirlingS2[n/#+2, 5] - 50 StirlingS2[n/#+1, 5] + 25 StirlingS2[n/#, 5], Divisible[#, 4], 2 StirlingS2[n/#+3, 5] - 12 StirlingS2[n/#+2, 5] + 26 StirlingS2[n/#+1, 5] - 24 StirlingS2[n/#, 5], Divisible[#, 3], 3 StirlingS2[n/#+2, 5] - 15 StirlingS2[n/#+1, 5] + 21 StirlingS2[n/#, 5], Divisible[#, 2], 3 StirlingS2[n/#+2, 5] - 11 StirlingS2[n/#+1, 5] + 6 StirlingS2[n/#, 5], True, StirlingS2[n/#, 5]] &], {n, 1, 40}]
    mx = 40; Drop[CoefficientList[Series[-Sum[(EulerPhi[d] / d) Which[
      Divisible[d, 60], Log[1 - 5x^d] - Log[1 - 4x^d], Divisible[d, 30],
      (3 Log[1 - 5x^d] - 3 Log[1 - 4x^d] + Log[1 - x^d]) / 4, Divisible[d, 20],
      (2 Log[1 - 5x^d] - 2 Log[1 - 4x^d] + Log[1 - 2x^d] - Log[1 - x^d]) / 3,
      Divisible[d, 15], (3 Log[1 - 5x^d] - 3 Log[1 - 4x^d] + 2 Log[1 - 3x^d] -
      2 Log[1 - 2x^d] + 3 Log[1 - x^d]) / 8, Divisible[d, 12],
      (4 Log[1 - 5x^d] - 5 Log[1 - 4x^d]) / 5, Divisible[d, 10],
      (5 Log[1 - 5x^d] - 5 Log[1 - 4x^d] + 4 Log[1 - 2x^d] - Log[1 - x^d]) / 12,
      Divisible[d, 6], (11 Log[1 - 5x^d] - 15 Log[1 - 4x^d] + 5 Log[1 - x^d]) /
      20, Divisible[d, 5], (5 Log[1 - 5x^d] - Log[1 - 4x^d] + 2 Log[1 - 3x^d] -
      2 Log[1 - 2x^d] + Log[1 - x^d]) / 24, Divisible[d, 4], (7 Log[1 - 5x^d] -
      10 Log[1 - 4x^d] + 5 Log[1 - 2x^d] - 5 Log[1 - x^d]) / 15,
      Divisible[d, 3], (7 Log[1 - 5x^d] - 15 Log[1 - 4x^d] + 10 Log[1 - 3x^d] -
      10 Log[1 - 2x^d] + 15 Log[1 - x^d]) / 40, Divisible[d, 2],
      (13 Log[1 - 5x^d] - 25 Log[1 - 4x^d] + 20 Log[1 - 2x^d] -
      5 Log[1 - x^d]) / 60, True, (Log[1 - 5x^d] - 5 Log[1 - 4x^d] +
      10 Log[1 - 3x^d] - 10 Log[1 - 2x^d] + 5 Log[1 - x^d]) / 120], {d, 1, mx}], {x, 0, mx}], x], 1]
    (End)

Formula

a(n) = A056293(n) - A056292(n).
From Robert A. Russell, May 29 2018: (Start)
a(n) = (1/n) * Sum_{d|n} phi(d) * ([d==0 mod 60] * (S2(n/d+4,5) -
6*S2(n/d+3,5) + 11*S2(n/d+2,5) - 6*S2(n/d+1,5)) + [d==30 mod 60] *
(S2(n/d+4,5) - 8*S2(n/d+3,5) + 26*S2(n/d+2,5) - 43*S2(n/d+1,5) +
30*S2(n/d,5)) + [d==20 mod 60 | d==40 mod 60] * (S2(n/d+4,5) -
8*S2(n/d+3,5) + 23*S2(n/d+2,5) - 24*S2(n/d+1,5)) + [d==15 mod 60 |
d==45 mod 60] * (S2(n/d+4,5) - 10*S2(n/d+3,5) + 38*S2(n/d+2,5) -
65*S2(n/d+1,5) + 45*S2(n/d,5)) + [d mod 60 in {12,24,36,48}] *
(4*S2(n/d+3,5) - 24*S2(n/d+2,5) + 44*S2(n/d+1,5) - 24*S2(n/d,5)) +
[d=10 mod 60 | d==50 mod 60] * (S2(n/d+4,5) - 10*S2(n/d+3,5) +
38*S2(n/d+2,5) - 61*S2(n/d+1,5) + 30*S2(n/d,5)) + [d mod 60 in
{6,18,42,54}] * (2*S2(n/d+3,5) - 9*S2(n/d+2,5) + 7*S2(n/d+1,5) +
6*S2(n/d,5)) + [d mod 60 in {5,25,35,55}] * (S2(n/d+4,5) -
10*S2(n/d+3,5) + 35*S2(n/d+2,5) - 50*S2(n/d+1,5) + 25*S2(n/d,5)) +
[d mod 60 in {4,8,16,28,32,44,52,56}] * (2*S2(n/d+3,5) - 12*S2(n/d+2,5) +
26*S2(n/d+1,5) - 24*S2(n/d,5)) + [d mod 60 in {3,9,21,27,33,39,51,57}] *
(3*S2(n/d+2,5) - 15*S2(n/d+1,5) + 21*S2(n/d,5)) + [d mod 60 in
{2,14,22,26,34,38,46,58}] * (3*S2(n/d+2,5) - 11*S2(n/d+1,5) +
6*S2(n/d,5)) + [d mod 60 in {1,7,11,13,17,19,23,29,31,37,41,43,47,49,53,
59}] * S2(n/d,5)), where S2(n,k) is the Stirling subset number, A008277.
G.f.: -Sum_{d>0} (phi(d) / d) * ([d==0 mod 60] * (log(1-4x^d) -
log(1-3x^d)) + [d==30 mod 60] * (3*log[1-5x^d) - 3*log(1-4x^d) +
log(1-x^d)) / 4 + [d==20 mod 60 | d==40 mod 60] * (2*log(1-5x^d) -
2*log(1-4x^d) + log(1-2x^d) - log(1-x^d)) / 3 +
[d==15 mod 60 | d==45 mod 60] * (3*log(1-5x^d) - 3*log(1-4x^d) +
2*log(1-3x^d) - 2*log(1-2x^d) + 3*log(1-x^d)) / 8 + [d mod 60 in
{12,24,36,48}] * (4*log(1-5x^d) - 5*log(1-4x^d)) / 5 + [d=10 mod 60 |
d==50 mod 60] * (5*log(1-5x^d) - 5*log(1-4x^d) + 4*log(1-2x^d) -
log(1-x^d)) / 12 + [d mod 60 in {6,18,42,54}] * (11*log(1-5x^d) -
15*log(1-4x^d) + 5*log(1-x^d)) / 20 + [d mod 60 in {5,25,35,55}] *
(5*log(1-5x^d) - log(1-4x^d) + 2*log(1-3x^d) - 2*log(1-2x^d) +
log(1-x^d)) / 24 + [d mod 60 in {4,8,16,28,32,44,52,56}] *
(7*log(1-5x^d) - 10*log(1-4x^d) + 5*log(1-2x^d) - 5*log(1-x^d)) /
15 + [d mod 60 in {3,9,21,27,33,39,51,57}] * (7*log(1-5x^d) -
15*log(1-4x^d) + 10*log(1-3x^d) - 10*log(1-2x^d) + 15*log(1-x^d)) /
40 + [d mod 60 in {2,14,22,26,34,38,46,58}] * (13*log(1-5x^d) -
25*log(1-4x^d) + 20*log(1-2x^d) - 5*log(1-x^d)) / 60 + [d mod 60 in
{1,7,11,13,17,19,23,29,31,37,41,43,47,49,53,59}] * (log(1-5x^d) -
5*log(1-4x^d) + 10*log(1-3x^d) - 10*log(1-2x^d) + 5*log(1-x^d)) / 120).
(End)

A209805 Triangle read by rows: T(n,k) is the number of k-block noncrossing partitions of n-set up to rotations.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 4, 2, 1, 1, 3, 10, 10, 3, 1, 1, 3, 15, 25, 15, 3, 1, 1, 4, 26, 64, 64, 26, 4, 1, 1, 4, 38, 132, 196, 132, 38, 4, 1, 1, 5, 56, 256, 536, 536, 256, 56, 5, 1, 1, 5, 75, 450, 1260, 1764, 1260, 450, 75, 5, 1
Offset: 1

Views

Author

Tilman Piesk, Mar 13 2012

Keywords

Comments

Like the Narayana triangle A001263 (and unlike A152175) this triangle is symmetric.
The diagonal entries are 1, 1, 4, 25, 196, 1764, ... which is probably sequence A001246 - the squares of the Catalan numbers.
The above conjecture about the diagonal entries T(2*n-1, n) is true since gcd(2*n-1, n) = gcd(2*n-1, n-1) = 1 and then T(2*n-1, n) simplifies to A001246(n-1) using the formula given below. - Andrew Howroyd, Nov 15 2017

Examples

			Triangle begins:
  1;
  1,   1;
  1,   1,   1;
  1,   2,   2,   1;
  1,   2,   4,   2,   1;
  1,   3,  10,  10,   3,   1;
  1,   3,  15,  25,  15,   3,   1;
  1,   4,  26,  64,  64,  26,   4,   1;
  1,   4,  38, 132, 196, 132,  38,   4,   1;
  1,   5,  56, 256, 536, 536, 256,  56,   5,   1;
		

Crossrefs

Cf. A054357 (row sums), A001246 (square Catalan numbers).

Programs

  • Mathematica
    b[n_, k_] := Binomial[n-1, n-k] Binomial[n, n-k];
    T[n_, k_] := (DivisorSum[GCD[n, k], EulerPhi[#] b[n/#, k/#]&] + DivisorSum[GCD[n, k - 1], EulerPhi[#] b[n/#, (n + 1 - k)/#]&] - k Binomial[n, k]^2/(n - k + 1))/n;
    Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 01 2018, after Andrew Howroyd *)
  • PARI
    b(n,k)=binomial(n-1,n-k)*binomial(n,n-k);
    T(n,k)=(sumdiv(gcd(n,k), d, eulerphi(d)*b(n/d,k/d)) + sumdiv(gcd(n,k-1), d, eulerphi(d)*b(n/d,(n+1-k)/d)) - k*binomial(n,k)^2/(n-k+1))/n; \\ Andrew Howroyd, Nov 15 2017

Formula

T(n,k) = (1/n)*((Sum_{d|gcd(n,k)} phi(d)*A103371(n/d-1,k/d-1)) + (Sum_{d|gcd(n,k-1)} phi(d)*A103371(n/d-1,(n+1-k)/d-1)) - A132812(n,k)). - Andrew Howroyd, Nov 15 2017

A056299 Number of n-bead necklace structures using exactly six different colored beads.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 3, 36, 296, 2303, 16317, 110462, 717024, 4532105, 28046285, 170938814, 1029749994, 6149327905, 36477979041, 215304158916, 1265984738264, 7422971231829, 43433472086235, 253759842223290
Offset: 1

Views

Author

Keywords

Comments

Turning over the necklace is not allowed. Colors may be permuted without changing the necklace structure.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 6 of A152175.

Programs

  • Mathematica
    From Robert A. Russell, May 29 2018: (Start)
    Adn[d_, n_] := Adn[d, n] = If[1==n, DivisorSum[d, x^# &],
      Expand[Adn[d, 1] Adn[d, n-1] + D[Adn[d, n-1], x] x]];
    Table[Coefficient[DivisorSum[n, EulerPhi[#] Adn[#, n/#] &]/n , x, 6],
      {n, 1, 40}] (* after Gilbert and Riordan *)
    Table[(1/n) DivisorSum[n, EulerPhi[#] Which[Divisible[#, 60], StirlingS2[n/#+5, 6] - 10 StirlingS2[n/#+4, 6] + 35 StirlingS2[n/#+3, 6] - 50 StirlingS2[n/#+2, 6] + 24 StirlingS2[n/#+1, 6], Divisible[#, 30], StirlingS2[n/#+5, 6] - 12 StirlingS2[n/#+4, 6] + 56 StirlingS2[n/#+3, 6] - 123 StirlingS2[n/#+2, 6] + 108 StirlingS2[n/#+1, 6], Divisible[#, 20], 4 StirlingS2[n/#+4, 6] - 44 StirlingS2[n/#+3, 6] + 176 StirlingS2[n/#+2, 6] - 296 StirlingS2[n/#+1, 6] + 160 StirlingS2[n/#, 6], Divisible[#, 15], 3 StirlingS2[n/#+4, 6] - 36 StirlingS2[n/#+3, 6] + 159 StirlingS2[n/#+2, 6] - 306 StirlingS2[n/#+1, 6] + 225 StirlingS2[n/#, 6], Divisible[#, 12], StirlingS2[n/#+5, 6] - 12 StirlingS2[n/#+4, 6] + 59 StirlingS2[n/#+3, 6] - 156 StirlingS2[n/#+2, 6] + 228 StirlingS2[n/#+1, 6] - 144 StirlingS2[n/#, 6], Divisible[#, 10], 2 StirlingS2[n/#+4, 6] - 23 StirlingS2[n/#+3, 6] + 103 StirlingS2[n/#+2, 6] - 212 StirlingS2[n/#+1, 6] + 160 StirlingS2[n/#, 6], Divisible[#, 6], StirlingS2[n/#+5, 6] - 14 StirlingS2[n/#+4, 6] + 80 StirlingS2[n/#+3, 6] - 229 StirlingS2[n/#+2, 6] + 312 StirlingS2[n/#+1, 6] - 144 StirlingS2[n/#, 6], Divisible[#, 5], 2 StirlingS2[n/#+4, 6] - 24 StirlingS2[n/#+3, 6] + 106 StirlingS2[n/#+2, 6] - 204 StirlingS2[n/#+1, 6] + 145 StirlingS2[n/#, 6], Divisible[#, 4], 2 StirlingS2[n/#+4, 6] - 20 StirlingS2[n/#+3, 6] + 70 StirlingS2[n/#+2, 6] - 92 StirlingS2[n/#+1, 6] + 16 StirlingS2[n/#, 6], Divisible[#, 3], StirlingS2[n/#+4, 6] - 12 StirlingS2[n/#+3, 6] + 53 StirlingS2[n/#+2, 6] - 102 StirlingS2[n/#+1, 6] + 81 StirlingS2[n/#, 6], Divisible[#, 2], StirlingS2[n/#+3, 6] - 3 StirlingS2[n/#+2, 6] - 8 StirlingS2[n/#+1, 6] + 16 StirlingS2[n/#, 6], True, StirlingS2[n/#, 6]] &], {n, 1, 40}]
    mx = 40; Drop[CoefficientList[Series[-Sum[(EulerPhi[d] / d) Which[
      Divisible[d, 60], Log[1 - 6x^d] - Log[1 - 5x^d], Divisible[d, 30],
      (3 Log[1 - 6x^d] - 3 Log[1 - 5x^d] + Log[1 - 2x^d] - Log[1 - x^d]) / 4,
      Divisible[d, 20], (5 Log[1 - 6x^d] - 6 Log[1 - 5x^d] + 2 Log[1 - 3x^d] -
      3 Log[1 - 2x^d]) / 9, Divisible[d, 15], (5 Log[1 - 6x^d] -
      6 Log[1 - 5x^d] + 3 Log[1 - 4x^d] - 4 Log[1 - 3x^d] + 3 Log[1 - 2x^d] -
      6 Log[1 - x^d]) / 16, Divisible[d, 12], (4 Log[1 - 6x^d] -
      4 Log[1 - 5x^d] + Log[1 - x^d]) / 5, Divisible[d, 10], (11 Log[1 - 6x^d] -
      15 Log[1 - 5x^d] + 8 Log[1 - 3x^d] - 3 Log[1 - 2x^d] - 9 Log[1 - x^d]) /
      36, Divisible[d, 6], (11 Log[1 - 6x^d] - 11 Log[1 - 5x^d] +
      5 Log[1 - 2x^d] - Log[1 - x^d]) / 20, Divisible[d, 5], (29 Log[1 - 6x^d] -
      30 Log[1 - 5x^d] + 3 Log[1 - 4x^d] - 4 Log[1 - 3x^d] + 3 Log[1 - 2x^d] -
      30 Log[1 - x^d]) / 144, Divisible[d, 4], (16 Log[1 - 6x^d] -
      21 Log[1 - 5x^d] + 10 Log[1 - 3x^d] - 15 Log[1 - 2x^d] + 9 Log[1 - x^d]) /
      45, Divisible[d, 3], (9 Log[1 - 6x^d] - 14 Log[1 - 5x^d] +
      15 Log[1 - 4x^d] - 20 Log[1 - 3x^d] + 15 Log[1 - 2x^d] -
      14 Log[1 - x^d]) / 80, Divisible[d, 2], (19 Log[1 - 6x^d] -
      39 Log[1 - 5x^d] + 40 Log[1 - 3x^d] - 15 Log[1 - 2x^d] - 9 Log[1 - x^d]) /
      180, True, (Log[1 - 6x^d] - 6 Log[1 - 5x^d] + 15 Log[1 - 4x^d] -
      20 Log[1 - 3x^d] + 15 Log[1 - 2x^d] - 6 Log[1 - x^d]) / 720],
      {d, 1, mx}], {x, 0, mx}], x], 1]
    (End)

Formula

a(n) = A056294(n) - A056293(n).
From Robert A. Russell, May 29 2018: (Start)
a(n) = (1/n) * Sum_{d|n} phi(d) * ([d==0 mod 60] * (S2(n/d+5,6) -
10*S2(n/d+4,6) + 35*S2(n/d+3,6) - 50*S2(n/d+2,6) + 24*S2(n/d+1,6)) +
[d==30 mod 60] * (S2(n/d+5,6) - 12*S2(n/d+4,6) + 56*S2(n/d+3,6) -
123*S2(n/d+2,6) + 108*S2(n/d+1,6)) + [d==20 mod 60 | d==40 mod 60] *
(4*S2(n/d+4,6) - 44*S2(n/d+3,6) + 176*S2(n/d+2,6) - 296*S2(n/d+1,6) +
160*S2(n/d,6)) + [d==15 mod 60 | d==45 mod 60] * (3*S2(n/d+4,6) -
36*S2(n/d+3,6) + 159*S2(n/d+2,6) - 306*S2(n/d+1,6) + 225*S2(n/d,6)) +
[d mod 60 in {12,24,36,48}] * (S2(n/d+5,6) - 12*S2(n/d+4,6) +
59*S2(n/d+3,6) - 156*S2(n/d+2,6) + 228*S2(n/d+1,6) - 144*S2(n/d,6)) +
[d=10 mod 60 | d==50 mod 60] * (2*S2(n/d+4,6) - 23*S2(n/d+3,6) +
103*S2(n/d+2,6) - 212*S2(n/d+1,6) + 160*S2(n/d,6)) + [d mod 60 in
{6,18,42,54}] * (S2(n/d+5,6) - 14*S2(n/d+4,6) + 80*S2(n/d+3,6) -
229*S2(n/d+2,6) + 312*S2(n/d+1,6) - 144*S2(n/d,6)) + [d mod 60 in
{5,25,35,55}] * (2*S2(n/d+4,6) - 24*S2(n/d+3,6) + 106*S2(n/d+2,6) -
204*S2(n/d+1,6) + 145*S2(n/d,6)) + [d mod 60 in {4,8,16,28,32,44,52,56}] *
(2*S2(n/d+4,6) - 20*S2(n/d+3,6) + 70*S2(n/d+2,6) - 92*S2(n/d+1,6) +
16*S2(n/d,6)) + [d mod 60 in {3,9,21,27,33,39,51,57}] * (S2(n/d+4,6) -
12*S2(n/d+3,6) + 53*S2(n/d+2,6) - 102*S2(n/d+1,6) + 81*S2(n/d,6)) +
[d mod 60 in {2,14,22,26,34,38,46,58}] * (S2(n/d+3,6) - 3*S2(n/d+2,6) -
8*S2(n/d+1,6) + 16*S2(n/d,6)) + [d mod 60 in {1,7,11,13,17,19,23,29,31,37,
41,43,47,49,53,59}] * S2(n/d,6)), where S2(n,k) is the Stirling subset
number, A008277.
G.f.: -Sum_{d>0} (phi(d) / d) * ([d==0 mod 60] * (log(1-6x^d) -
log(1-5x^d)) + [d==30 mod 60] * (3*log(1-6x^d) - 3*log(1-5x^d) +
log(1-2x^d) - log(1-x^d)) / 4 + [d==20 mod 60 | d==40 mod 60] *
(5*log(1-6x^d) - 6*log(1-5x^d) + 2*log(1-3x^d) - 3*log(1-2x^d)) / 9 +
[d==15 mod 60 | d==45 mod 60] * (5*log(1-6x^d) - 6*log(1-5x^d) +
3*log(1-4x^d) - 4*log(1-3x^d) + 3*log(1-2x^d) - 6*log(1-x^d)) / 16 +
[d mod 60 in {12,24,36,48}] * (4*log(1-6x^d) - 4*log(1-5x^d) +
log(1-x^d)) / 5 + [d=10 mod 60 | d==50 mod 60] * (11*log(1-6x^d) -
15*log(1-5x^d) + 8*log(1-3x^d) - 3*log(1-2x^d) - 9*log(1-x^d)) / 36 +
[d mod 60 in {6,18,42,54}] * (11*log(1-6x^d) - 11*log(1-5x^d) +
5*log(1-2x^d) - log(1-x^d)) / 20 + [d mod 60 in {5,25,35,55}] *
(29*log(1-6x^d) - 30*log(1-5x^d) + 3*log(1-4x^d) - 4*log(1-3x^d) +
3*log(1-2x^d) - 30*log(1-x^d)) / 144 + [d mod 60 in {4,8,16,28,32,44,52,
56}] * (16*log(1-6x^d) - 21*log(1-5x^d) + 10*log(1-3x^d) -
15*log(1-2x^d) + 9*log(1-x^d)) / 45 + [d mod 60 in {3,9,21,27,33,39,51, 57}] * (9*log(1-6x^d) - 14*log(1-5x^d) + 15*log(1-4x^d) - 20*log(1-3x^d) +
15*log(1-2x^d) - 14*log(1-x^d)) / 80 + [d mod 60 in {2,14,22,26,34,38,46,
58}] * (19*log(1-6x^d) - 39*log(1-5x^d) + 40*log(1-3x^d) -
15*log(1-2x^d) - 9*log(1-x^d)) / 180 + [d mod 60 in {1,7,11,13,17,19,23, 29,31,37,41,43,47,49,53,59}] * (log(1-6x^d) - 6 log(1-5x^d) +
15 log(1-4x^d) - 20 log(1-3x^d) + 15 log(1-2x^d) - 6 log(1-x^d)) / 720).
(End)

A320747 Array read by antidiagonals: T(n,k) is the number of color patterns (set partitions) in an oriented cycle of length n using k or fewer colors (subsets).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 3, 4, 1, 1, 2, 3, 6, 4, 1, 1, 2, 3, 7, 9, 8, 1, 1, 2, 3, 7, 11, 26, 10, 1, 1, 2, 3, 7, 12, 39, 53, 20, 1, 1, 2, 3, 7, 12, 42, 103, 146, 30, 1, 1, 2, 3, 7, 12, 43, 123, 367, 369, 56, 1, 1, 2, 3, 7, 12, 43, 126, 503, 1235, 1002, 94, 1, 1, 2, 3, 7, 12, 43, 127, 539, 2008, 4439, 2685, 180, 1, 1, 2, 3, 7, 12, 43, 127, 543, 2304, 8720, 15935, 7434, 316, 1, 1, 2, 3, 7, 12, 43, 127, 544, 2356, 11023, 38365, 58509, 20441, 596, 1
Offset: 1

Views

Author

Robert A. Russell, Oct 21 2018

Keywords

Comments

Two color patterns are equivalent if the colors are permuted. An oriented cycle counts each chiral pair as two.
Adnk[d,n,k] in Mathematica program is coefficient of x^k in A(d,n)(x) in Gilbert and Riordan reference.
In other words, the number of n-bead necklace structures using a maximum of k different colored beads. - Andrew Howroyd, Oct 30 2019

Examples

			Array begins with T(1,1):
1   1    1     1      1      1      1      1      1      1      1      1 ...
1   2    2     2      2      2      2      2      2      2      2      2 ...
1   2    3     3      3      3      3      3      3      3      3      3 ...
1   4    6     7      7      7      7      7      7      7      7      7 ...
1   4    9    11     12     12     12     12     12     12     12     12 ...
1   8   26    39     42     43     43     43     43     43     43     43 ...
1  10   53   103    123    126    127    127    127    127    127    127 ...
1  20  146   367    503    539    543    544    544    544    544    544 ...
1  30  369  1235   2008   2304   2356   2360   2361   2361   2361   2361 ...
1  56 1002  4439   8720  11023  11619  11697  11702  11703  11703  11703 ...
1  94 2685 15935  38365  54682  60499  61579  61684  61689  61690  61690 ...
1 180 7434 58509 173609 284071 336447 349746 351619 351766 351772 351773 ...
For T(4,2)=4, the patterns are AAAA, AAAB, AABB, and ABAB.
For T(4,3)=6, the patterns are the above four, AABC and ABAC.
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Partial row sums of A152175.
For increasing k, columns converge to A084423.
Cf. A320748 (unoriented), A320742 (chiral), A305749 (achiral).

Programs

  • Mathematica
    Adnk[d_,n_,k_] := Adnk[d,n,k] = If[n>0 && k>0, Adnk[d,n-1,k]k + DivisorSum[d, Adnk[d,n-1,k-#] &], Boole[n==0 && k==0]]
    Table[Sum[DivisorSum[n, EulerPhi[#] Adnk[#,n/#,j] &], {j,k-n+1}]/n, {k,15}, {n,k}] // Flatten
  • PARI
    \\ R is A152175 as square matrix
    R(n) = {Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, eulerphi(m) * subst(serlaplace(-1 + exp(sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d))), x, x^m))/x))]))}
    T(n)={my(M=R(n)); for(i=2, n, M[,i] += M[,i-1]); M}
    { my(A=T(12)); for(n=1, #A, print(A[n, ])) } \\ Andrew Howroyd, Nov 03 2019

Formula

T(n,k) = (1/n)*Sum_{j=1..k} Sum_{d|n} phi(d)*A(d,n/d,j), where A(d,n,k) = [n==0 & k==0] + [n>0 & k>0]*(k*A(d,n-1,k) + Sum_{j|d} A(d,n-1,k-j)).
T(n,k) = A320748(n,k) + A320742(n,k) = 2*A320748(n,k) - A305749(n,k) = A305749(n,k) + 2*A320742(n,k).
Previous Showing 11-19 of 19 results.