cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A152767 3 times 10-gonal (or decagonal) numbers: a(n) = 3*n*(4*n-3).

Original entry on oeis.org

0, 3, 30, 81, 156, 255, 378, 525, 696, 891, 1110, 1353, 1620, 1911, 2226, 2565, 2928, 3315, 3726, 4161, 4620, 5103, 5610, 6141, 6696, 7275, 7878, 8505, 9156, 9831, 10530, 11253, 12000, 12771, 13566, 14385, 15228, 16095, 16986, 17901, 18840, 19803, 20790, 21801
Offset: 0

Views

Author

Omar E. Pol, Dec 15 2008

Keywords

Comments

3*A172078(n) = n*a(n) - Sum_{k=0..n-1} a(k). - Bruno Berselli, Dec 12 2010

Examples

			For n=8, a(8) = (1*3 + 5*7 + 9*11 +..+ 29*31) - (2*4 + 6*8 + 10*12 +..+ 26*28) = 696 (see Problem 1052 in References). - _Bruno Berselli_, Dec 12 2010
		

References

  • "Supplemento al Periodico di Matematica", Raffaello Giusti Editore (Livorno), Jan. 1910 p. 47 (Problem 1052).

Crossrefs

Cf. numbers of the form n*(n*k - k + 6)/2, this sequence is the case k=24: see Comments lines of A226492.

Programs

Formula

a(n) = 12*n^2 - 9*n = 3*A001107(n).
a(n) = a(n-1) + 24*n - 21, n > 0. - Vincenzo Librandi, Nov 26 2010
a(n) = Sum_{k=0..n-1} A001539(k) - Sum_{k=0..n-1} 4*A002939(k) if n > 0 (see References, Problem 1052). - Bruno Berselli, Dec 08 2010 - Jan 21 2011
G.f.: -3*x*(1+7*x)/(x-1)^3.
a(0)=0, a(1)=3, a(2)=30, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, May 26 2012
From Elmo R. Oliveira, Dec 15 2024: (Start)
E.g.f.: 3*exp(x)*x*(1 + 4*x).
a(n) = A153794(n) - n. (End)

A153448 3 times 12-gonal (or dodecagonal) numbers: a(n) = 3*n*(5*n-4).

Original entry on oeis.org

0, 3, 36, 99, 192, 315, 468, 651, 864, 1107, 1380, 1683, 2016, 2379, 2772, 3195, 3648, 4131, 4644, 5187, 5760, 6363, 6996, 7659, 8352, 9075, 9828, 10611, 11424, 12267, 13140, 14043, 14976, 15939, 16932, 17955, 19008, 20091, 21204
Offset: 0

Views

Author

Omar E. Pol, Dec 26 2008

Keywords

Comments

This sequence is related to A172117 by 3*A172117(n) = n*a(n) - Sum_{i=0..n-1} a(i) and this is the case d=10 in the identity n*(3*n*(d*n - d + 2)/2) - Sum_{k=0..n-1} 3*k*(d*k - d + 2)/2 = n*(n+1)*(2*d*n - 2*d + 3)/2. - Bruno Berselli, Aug 26 2010

Crossrefs

Cf. numbers of the form n*(n*k-k+6)/2, this sequence is the case k=30: see Comments lines of A226492.

Programs

Formula

a(n) = 15*n^2 - 12*n = A051624(n)*3.
a(n) = 30*n + a(n-1) - 27 with n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
G.f.: 3*x*(1 + 9*x)/(1-x)^3. - Bruno Berselli, Jan 21 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=0, a(1)=3, a(2)=36. - Harvey P. Dale, Jun 18 2014
E.g.f.: 3*x*(1 + 5*x)*exp(x). - G. C. Greubel, Aug 21 2016
a(n) = (4*n-2)^2 - (n-2)^2. In general, if P(k,n) is the k-th n-gonal number, then (2*k+1)*P(8*k+4,n) = ((3*k+1)*n-2*k)^2 - (k*n-2*k)^2. - Charlie Marion, Jul 29 2021

A153783 3 times 11-gonal (or hendecagonal) numbers: a(n) = 3*n*(9*n-7)/2.

Original entry on oeis.org

0, 3, 33, 90, 174, 285, 423, 588, 780, 999, 1245, 1518, 1818, 2145, 2499, 2880, 3288, 3723, 4185, 4674, 5190, 5733, 6303, 6900, 7524, 8175, 8853, 9558, 10290, 11049, 11835, 12648, 13488, 14355, 15249, 16170, 17118, 18093, 19095
Offset: 0

Views

Author

Omar E. Pol, Jan 02 2009

Keywords

Crossrefs

Cf. numbers of the form n*(n*k-k+6)/2, this sequence is the case k=27: see Comments lines of A226492.

Programs

Formula

a(n) = (27*n^2 - 21*n)/2 = A051682(n)*3.
a(n) = 27*n + a(n-1) - 24, with n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
G.f.: 3*x*(1 + 8*x)/(1-x)^3. - Bruno Berselli, Jan 21 2011
From G. C. Greubel, Aug 28 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
E.g.f.: (3/2)*x*(2 + 9*x)*exp(x). (End)

A153875 3 times 13-gonal (or tridecagonal) numbers: a(n) = 3*n*(11*n - 9)/2.

Original entry on oeis.org

0, 3, 39, 108, 210, 345, 513, 714, 948, 1215, 1515, 1848, 2214, 2613, 3045, 3510, 4008, 4539, 5103, 5700, 6330, 6993, 7689, 8418, 9180, 9975, 10803, 11664, 12558, 13485, 14445, 15438, 16464, 17523, 18615, 19740, 20898, 22089
Offset: 0

Views

Author

Omar E. Pol, Jan 03 2009

Keywords

Crossrefs

Cf. numbers of the form n*(n*k-k+6)/2, this sequence is the case k=33: see Comments lines of A226492.

Programs

Formula

a(n) = (33*n^2 - 27*n)/2 = A051865(n)*3.
a(n) = a(n-1) + 33*n - 30, with n>0, a(0)=0. - Vincenzo Librandi, Dec 14 2010
G.f.: 3*x*(1 + 10*x)/(1-x)^3. - Bruno Berselli, Jan 21 2011
From G. C. Greubel, Aug 31 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
E.g.f.: (3/2)*x*(2 + 11*x)*exp(x). (End)

A153794 4 times octagonal numbers: a(n) = 4*n*(3*n-2).

Original entry on oeis.org

0, 4, 32, 84, 160, 260, 384, 532, 704, 900, 1120, 1364, 1632, 1924, 2240, 2580, 2944, 3332, 3744, 4180, 4640, 5124, 5632, 6164, 6720, 7300, 7904, 8532, 9184, 9860, 10560, 11284, 12032, 12804, 13600, 14420, 15264, 16132, 17024
Offset: 0

Views

Author

Omar E. Pol, Jan 19 2009

Keywords

Comments

Sequence found by reading the segment (0, 4) together with the line from 4, in the direction 4, 32, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. - Omar E. Pol, Jul 18 2012

Crossrefs

Programs

Formula

a(n) = 12*n^2 - 8*n = 4*A000567(n) = 2*A139267(n).
a(n) = 24*n + a(n-1) - 20 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
a(0)=0, a(1)=4, a(2)=32, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Jul 14 2011
G.f.: 4*(x + 5*x^2)/(1-x)^3. - Harvey P. Dale, Jul 14 2011
E.g.f.: 4*x*(1 + 3*x)*exp(x). - G. C. Greubel, Aug 29 2016

A153796 6 times octagonal numbers: a(n) = 6*n*(3*n-2).

Original entry on oeis.org

0, 6, 48, 126, 240, 390, 576, 798, 1056, 1350, 1680, 2046, 2448, 2886, 3360, 3870, 4416, 4998, 5616, 6270, 6960, 7686, 8448, 9246, 10080, 10950, 11856, 12798, 13776, 14790, 15840, 16926, 18048, 19206, 20400, 21630, 22896, 24198, 25536, 26910, 28320, 29766
Offset: 0

Views

Author

Omar E. Pol, Jan 19 2009

Keywords

Crossrefs

Programs

Formula

a(n) = 18*n^2 - 12*n = 6*A000567(n) = 3*A139267(n) = 2*A152751(n).
a(n) = a(n-1) + 36*n - 30 (with a(0)=0). - Vincenzo Librandi, Dec 15 2010
From G. C. Greubel, Aug 29 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2.
G.f.: 6*x*(1 + 5*x)/(1 - x)^3.
E.g.f.: 6*x*(1 + 3*x)*exp(x). (End)

A224273 Decimal expansion of Baxter's four-coloring constant.

Original entry on oeis.org

1, 4, 6, 0, 9, 9, 8, 4, 8, 6, 2, 0, 6, 3, 1, 8, 3, 5, 8, 1, 5, 8, 8, 7, 3, 1, 1, 7, 8, 4, 6, 0, 5, 9, 6, 9, 7, 0, 3, 8, 9, 3, 1, 3, 5, 5, 8, 0, 7, 4, 6, 1, 7, 8, 8, 2, 0, 5, 7, 7, 5, 4, 3, 4, 4, 4, 1, 5, 2, 1, 3, 5, 5, 8, 8, 5, 7, 3, 1, 4, 4, 0, 7, 7, 6, 5, 3
Offset: 1

Views

Author

Bruno Berselli, Apr 02 2013

Keywords

Comments

The constant is named after Australian physicist Rodney James Baxter. - Amiram Eldar, Aug 13 2020

Examples

			1.46099848620631835815887311784605969703893135580746178820577543...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003. See p. 413.

Crossrefs

Programs

  • Mathematica
    RealDigits[3 Gamma[1/3]^3/(4 Pi^2), 10, 90][[1]]
  • PARI
    3*gamma(1/3)^3/(4*Pi^2) \\ Michel Marcus, Mar 23 2020

Formula

Equals 1/Product_{n>=1} (1-1/(3n-1)^2) = 3*Gamma(1/3)^3/(4*Pi^2).
Equals 1/(2^(1/3)*A081760). - Kritsada Moomuang, Mar 15 2020
Equals 2*Pi/(sqrt(3)*Gamma(2/3)^3). - Vaclav Kotesovec, Mar 23 2020
Equals Product_{k>=1} (1 + 1/A152751(k)). - Amiram Eldar, Aug 13 2020
Equals Sum_{k>=0} binomial(-1/3, k)^2. - Gerry Martens, Jul 24 2023

A064201 9 times octagonal numbers: a(n) = 9*n*(3*n-2).

Original entry on oeis.org

0, 9, 72, 189, 360, 585, 864, 1197, 1584, 2025, 2520, 3069, 3672, 4329, 5040, 5805, 6624, 7497, 8424, 9405, 10440, 11529, 12672, 13869, 15120, 16425, 17784, 19197, 20664, 22185, 23760, 25389, 27072, 28809, 30600, 32445, 34344, 36297, 38304, 40365, 42480, 44649
Offset: 0

Views

Author

Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr), Sep 22 2001

Keywords

References

  • L. Berzolari, Allgemeine Theorie der Höheren Ebenen Algebraischen Kurven, Encyclopädie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen. Band III_2. Heft 3, Leipzig: B. G. Teubner, 1906. p. 341.

Crossrefs

Programs

  • Mathematica
    9*PolygonalNumber[8,Range[0,40]] (* Requires Mathematica version 10 or later *) (* or *) LinearRecurrence[{3,-3,1},{0,9,72},40] (* Harvey P. Dale, Aug 01 2020 *)
  • PARI
    a(n)=9*n*(3*n-2) \\ Charles R Greathouse IV, Jun 16 2017

Formula

a(n) = 9*(n-2)*(3*n-8), with offset 2.
a(n) = 9*A000567(n). - Omar E. Pol, Dec 11 2008
a(n) = a(n-1) + 54*n - 45, with n > 0, a(0)=0. - Vincenzo Librandi, Dec 15 2010
G.f.: 9*x*(1+5*x)/(1-x)^3. - Colin Barker, Feb 29 2012
From Elmo R. Oliveira, Dec 25 2024: (Start)
E.g.f.: 9*exp(x)*x*(1 + 3*x).
a(n) = 3*A152751(n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3. (End)

Extensions

Better definition, corrected offset and edited from Omar E. Pol, Dec 11 2008

A153808 8 times octagonal numbers: 8*n*(3*n-2).

Original entry on oeis.org

0, 8, 64, 168, 320, 520, 768, 1064, 1408, 1800, 2240, 2728, 3264, 3848, 4480, 5160, 5888, 6664, 7488, 8360, 9280, 10248, 11264, 12328, 13440, 14600, 15808, 17064, 18368, 19720, 21120, 22568, 24064, 25608, 27200, 28840, 30528, 32264
Offset: 0

Views

Author

Omar E. Pol, Jan 19 2009

Keywords

Crossrefs

Cf. A000567 (octagonal numbers), A064201 (9 times octagonal numbers), A139267 (twice octagonal numbers), A152751 (3 times octagonal numbers), A153794 (4 times octagonal numbers).

Programs

  • Magma
    [ 8*n*(3*n-2): n in [0..40] ];
    
  • Mathematica
    Table[8*n*(3*n-2), {n,0,25}] (* or *) LinearRecurrence[{3,-3,1},{0,8,64}, 25] (* G. C. Greubel, Aug 29 2016 *)
    8*PolygonalNumber[8,Range[0,40]] (* Harvey P. Dale, Nov 22 2023 *)
  • PARI
    a(n)=24*n^2-16*n \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = 24*n^2 - 16*n = 8*A000567(n) = 4*A139267(n) = 2*A153794(n).
a(n) = a(n-1) + 48*n - 40 (with a(0)=0). - Vincenzo Librandi, Nov 27 2010
From G. C. Greubel, Aug 29 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: 8*x*(1 + 5*x)/(1 - x)^3.
E.g.f.: 8*x*(1 + 3*x)*exp(x). (End)

A194273 Concentric triangular numbers (see Comments lines for definition).

Original entry on oeis.org

0, 1, 3, 6, 9, 12, 15, 19, 24, 30, 36, 42, 48, 55, 63, 72, 81, 90, 99, 109, 120, 132, 144, 156, 168, 181, 195, 210, 225, 240, 255, 271, 288, 306, 324, 342, 360, 379, 399, 420, 441, 462, 483, 505, 528, 552, 576, 600, 624, 649, 675, 702, 729, 756, 783, 811
Offset: 0

Views

Author

Omar E. Pol, Aug 20 2011

Keywords

Comments

This can be interpreted as a cellular automaton on the infinite hexagonal net. The sequence gives the number of cells "ON" in the structure after n-th stage. A194272 gives the first differences. For a definition without words see the illustration of initial terms in the example section. For other concentric polygonal numbers see A194274, A194275 and A032528.
Also, row sums of an infinite square array T(n,k) in which column k lists 6*k-1 zeros followed by the numbers A008486 (see example).

Examples

			Using the numbers A008486 we can write:
0, 1, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36,...
0, 0, 0, 0, 0,  0,  0,  1,  3,  6,  9, 12, 15, 18,...
0, 0, 0, 0, 0,  0,  0,  0,  0,  0,  0,  0,  0,  1,...
And so on.
=========================================================
The sums of the columns give this sequence:
0, 1, 3, 6, 9, 12, 15, 19, 24, 30, 36, 42, 48, 55,...
...
Illustration of initial terms:
.                                              o
.                                 o           o o
.                      o         o o         o   o
.             o       o o       o   o       o     o
.      o     o o     o   o     o     o     o       o
. o   o o   o o o   o o o o   o o o o o   o o o o o o
.
. 1    3      6        9          12           15
.
.                                           o
.                        o                 o o
.       o               o o               o   o
.      o o             o   o             o     o
.     o   o           o     o           o   o   o
.    o     o         o   o   o         o   o o   o
.   o   o   o       o   o o   o       o   o o o   o
.  o         o     o           o     o             o
. o o o o o o o   o o o o o o o o   o o o o o o o o o
.
.       19               24                 30
		

Crossrefs

Formula

G.f.: x/(1-3*x+3*x^2-3*x^4+3*x^5-x^6) = x/((1-x)^3*(1+x)*(1-x+x^2)).
Previous Showing 11-20 of 20 results.