cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A153644 a(n) = 4*n^2 + 28*n + 10.

Original entry on oeis.org

42, 82, 130, 186, 250, 322, 402, 490, 586, 690, 802, 922, 1050, 1186, 1330, 1482, 1642, 1810, 1986, 2170, 2362, 2562, 2770, 2986, 3210, 3442, 3682, 3930, 4186, 4450, 4722, 5002, 5290, 5586, 5890, 6202, 6522, 6850, 7186, 7530, 7882, 8242, 8610, 8986, 9370
Offset: 1

Views

Author

Vincenzo Librandi, Dec 30 2008

Keywords

Comments

Sequence gives values of x such that x^3 + 39x^2 = y^2 since a(n)^3 + 39*a(n)^2 = (8n^3 + 84n^2 + 216n + 70)^2.
a(n) = 2*(seventh diagonal to A153238).
About the first comment, naturally, the complete list of nonnegative values of x in x^3 + 39*x^2 = y^2 is given by x = m^2-39 with m>6. - Bruno Berselli, Jan 25 2012

Crossrefs

Programs

Formula

From Colin Barker, Jan 24 2012: (Start)
a(1)=42, a(2)=82, a(3)=130, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: 2*x*((3-x)*(7-5*x))/(1-x)^3. (End)
E.g.f.: 2*(-5 + (5 + 16*x + 2*x^2)*exp(x)). - G. C. Greubel, Aug 23 2016
Sum_{n>=1} 1/a(n) = 62/1995 + tan(sqrt(39)*Pi/2)*Pi/(4*sqrt(39)). - Amiram Eldar, Mar 02 2023

A154575 a(n) = 2*n^2 + 12*n + 4.

Original entry on oeis.org

18, 36, 58, 84, 114, 148, 186, 228, 274, 324, 378, 436, 498, 564, 634, 708, 786, 868, 954, 1044, 1138, 1236, 1338, 1444, 1554, 1668, 1786, 1908, 2034, 2164, 2298, 2436, 2578, 2724, 2874, 3028, 3186, 3348, 3514, 3684, 3858, 4036, 4218, 4404, 4594, 4788, 4986, 5188
Offset: 1

Views

Author

Vincenzo Librandi, Jan 12 2009

Keywords

Comments

Sixth diagonal of A144562.
2*a(n) + 28 is a square.

Crossrefs

Programs

  • Magma
    I:=[18, 36, 58]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 26 2012
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {18, 36, 58}, 50] (* Vincenzo Librandi, Feb 26 2012 *)
    Table[2n^2+12n+4,{n,50}] (* Harvey P. Dale, Sep 18 2019 *)
  • PARI
    for(n=1, 50, print1(2*n^2+12*n+4", ")); \\ Vincenzo Librandi, Feb 26 2012

Formula

From R. J. Mathar, Jan 05 2011: (Start)
a(n) = 2*A028881(n+3).
G.f.: -2*x*(2*x-3)*(x-3)/(x-1)^3. (End)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Feb 26 2012
From Amiram Eldar, Feb 25 2023: (Start)
Sum_{n>=1} 1/a(n) = 1/28 - cot(sqrt(7)*Pi)*Pi/(4*sqrt(7)).
Sum_{n>=1} (-1)^(n+1)/a(n) = 31/84 - cosec(sqrt(7)*Pi)*Pi/(4*sqrt(7)). (End)
E.g.f.: 2*exp(x)*(x^2 + 7*x + 2). - Elmo R. Oliveira, Nov 02 2024

A154590 a(n) = 2*n^2 + 16*n + 6.

Original entry on oeis.org

24, 46, 72, 102, 136, 174, 216, 262, 312, 366, 424, 486, 552, 622, 696, 774, 856, 942, 1032, 1126, 1224, 1326, 1432, 1542, 1656, 1774, 1896, 2022, 2152, 2286, 2424, 2566, 2712, 2862, 3016, 3174, 3336, 3502, 3672, 3846, 4024, 4206, 4392, 4582, 4776, 4974, 5176
Offset: 1

Views

Author

Vincenzo Librandi, Jan 12 2009

Keywords

Comments

Eighth diagonal of A144562.
2*a(n) + 52 is a square.

Crossrefs

Programs

  • Mathematica
    Table[2n^2+16n+6,{n,50}] (* or *) LinearRecurrence[{3,-3,1},{24,46,72},50] (* Harvey P. Dale, Dec 27 2011 *)
  • PARI
    a(n)=2*n^2+16*n+6 \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = 2*A116711(n+3).
G.f.: -2*x*(3*x-4)*(x-3)/(x-1)^3.
From Amiram Eldar, Mar 02 2023: (Start)
Sum_{n>=1} 1/a(n) = 35/468 - cot(sqrt(13)*Pi)*Pi/(4*sqrt(13)).
Sum_{n>=1} (-1)^(n+1)/a(n) = 121/468 + cosec(sqrt(13)*Pi)*Pi/(4*sqrt(13)). (End)
From Elmo R. Oliveira, Jun 04 2025: (Start)
E.g.f.: 2*(exp(x)*(x^2 + 9*x + 3) - 3).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)

Extensions

Corrected (a(31) added) by Harvey P. Dale, Dec 27 2011

A154599 a(n) = 2*n^2 + 20*n + 8.

Original entry on oeis.org

30, 56, 86, 120, 158, 200, 246, 296, 350, 408, 470, 536, 606, 680, 758, 840, 926, 1016, 1110, 1208, 1310, 1416, 1526, 1640, 1758, 1880, 2006, 2136, 2270, 2408, 2550, 2696, 2846, 3000, 3158, 3320, 3486, 3656, 3830, 4008, 4190, 4376, 4566, 4760, 4958, 5160
Offset: 1

Views

Author

Vincenzo Librandi, Jan 12 2009

Keywords

Comments

Tenth diagonal of A144562.
2*a(n) + 84 is a square.

Crossrefs

Programs

  • Magma
    I:=[30, 56, 86]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 26 2012
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {30, 56, 86}, 50] (* Vincenzo Librandi, Feb 26 2012 *)
    Table[2n^2+20n+8,{n,50}] (* Harvey P. Dale, Jun 15 2019 *)
  • PARI
    for(n=1, 40, print1(2*n^2+20*n+8", ")); \\ Vincenzo Librandi, Feb 26 2012
    
  • SageMath
    [2*n^2+20*n+8 for n in range(1,41)] # G. C. Greubel, May 30 2024

Formula

From R. J. Mathar, Jan 05 2011: (Start)
a(n) = 2*A127147(n+13).
G.f.: 2*x*(5-4*x)*(3-x)/(1-x)^3. (End)
From Amiram Eldar, Feb 25 2023: (Start)
Sum_{n>=1} 1/a(n) = 79/952 - cot(sqrt(21)*Pi)*Pi/(4*sqrt(21)).
Sum_{n>=1} (-1)^(n+1)/a(n) = 2851/14280 - cosec(sqrt(21)*Pi)*Pi/(4*sqrt(21)). (End)
E.g.f.: 2*(-4 + (4 + 11*x + x^2)*exp(x)). - G. C. Greubel, May 30 2024

A282194 a(n) = smallest positive k such that 2*n + 2^k + 1 is composite.

Original entry on oeis.org

3, 5, 2, 1, 4, 2, 1, 7, 2, 1, 2, 1, 1, 3, 2, 1, 1, 2, 1, 4, 2, 1, 2, 1, 1, 2, 1, 1, 3, 2, 1, 1, 2, 1, 3, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 4, 2, 1, 4, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 4, 2, 1, 3, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1
Offset: 0

Views

Author

Altug Alkan, Feb 15 2017

Keywords

Comments

Least k such that a(k) = n are 3, 2, 0, 4, 1, 112, 7, 32917, 802, 9712, 1198673602 for the initial terms.

Examples

			a(1) = 5 because 3 + 2^k is prime for 0 < k < 5 and 3 + 2^5 = 35 is composite.
		

Crossrefs

Programs

  • Mathematica
    spk[n_]:=Module[{k=1},While[!CompositeQ[2n+2^k+1],k++];k]; Array[spk,110,0] (* Harvey P. Dale, Apr 26 2017 *)
  • PARI
    a(n) = my(k=1); while(isprime(2*n+2^k+1), k++); k;

A308833 Numbers r such that the r-th tetrahedral number A000292(r) divides r!.

Original entry on oeis.org

1, 7, 8, 13, 14, 19, 20, 23, 24, 25, 26, 31, 32, 33, 34, 37, 38, 43, 44, 47, 48, 49, 50, 53, 54, 55, 56, 61, 62, 63, 64, 67, 68, 73, 74, 75, 76, 79, 80, 83, 84, 85, 86, 89, 90, 91, 92, 93, 94, 97, 98, 103, 104, 109, 110, 113, 114, 115, 116, 117, 118, 119, 120
Offset: 1

Views

Author

Keywords

Comments

Conjecture: for every odd integer r > 1, the following statements are equivalent: a) r is a term of this sequence, b) r + 1 is a term of this sequence, c) r + 2 is composite.

Examples

			The 7th tetrahedral number is 84, and 84*60 = 5040 = 7!.
		

Crossrefs

Cf. A000142 (factorial numbers), A000292 (tetrahedral numbers).
Cf. A007921 (numbers which are not difference of two primes), A153238.

Programs

  • Maple
    q := n -> (irem(n!, n*(n+1)*(n+2)/6) = 0):
    select(q, [$1..120])[];
  • Mathematica
    Select[Range@ 120, Mod[#!, Pochhammer[#, 3]/6] == 0 &] (* Michael De Vlieger, Jul 08 2019 *)
  • PARI
    isok(k) = !(k! % (k*(k+1)*(k+2)/6)); \\ Michel Marcus, Jun 28 2019
    
  • PARI
    is(n) = { my(f = factor(binomial(n + 2, 3))); forstep(i = #f~, 1, -1, if(val(n, f[i, 1]) - f[i, 2] < 0, return(0) ) ); 1 }
    val(n, p) = my(r=0); while(n, r+=n\=p);r \\ David A. Corneth, Mar 22 2021

A153261 Primes p such that 3*p-2 is not prime.

Original entry on oeis.org

2, 17, 19, 29, 31, 41, 59, 73, 79, 83, 89, 97, 101, 107, 109, 131, 139, 149, 151, 157, 173, 179, 197, 199, 223, 227, 229, 233, 239, 241, 269, 281, 283, 311, 317, 349, 353, 359, 367, 379, 383, 389, 397, 409, 419, 421, 439, 449, 457, 463, 479, 499, 503, 509, 521
Offset: 1

Views

Author

Keywords

Comments

3*2-2=4 not prime, 17*3-2=49 not prime,... 3*3-2=7 is prime and not in this sequence.

Crossrefs

Cf. A153238 [From Vincenzo Librandi, Jan 01 2009]

Programs

  • Mathematica
    lst={};Do[p=Prime[n];If[ !PrimeQ[3*p-2],AppendTo[lst,p]],{n,6!}];lst

Extensions

Minor edits by N. J. A. Sloane, Jul 08 2010
Previous Showing 11-17 of 17 results.