cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A154297 Primes of the form (1+2+3+...+m)/21 = A000217(m)/21, for some m.

Original entry on oeis.org

5, 11, 41, 43
Offset: 1

Views

Author

Keywords

Comments

This asks for primes p which are a triangular number divided by 21, or, 2*3*7*p=k*(k+1) for some k. Matching factors shows that the sequence is complete [R. J. Mathar, Aug 15 2010]
Original definition: Primes of the form : 1/x+2/x+3/x+4/x+5/x+6/x+7/x+..., x=21.
The corresponding m-values are m=14, 21, 41, 42 (cf. A154296). It is clear that for m>42, A000217(m)/21 = m(m+1)/42 cannot be a prime. - M. F. Hasler, Dec 31 2012

Crossrefs

Programs

  • Mathematica
    lst={};s=0;Do[s+=n/21;If[Floor[s]==s,If[PrimeQ[s],AppendTo[lst,s]]],{n,0,9!}];lst
    #/21&/@Select[Accumulate[Range[100]],PrimeQ[#/21]&] (* Harvey P. Dale, Dec 17 2012 *)
  • PARI
    select(x->denominator(x)==1 & isprime(x), vector(42, m, m^2+m)/42)  \\ - M. F. Hasler, Dec 31 2012

Extensions

Added keywords fini,full - R. J. Mathar, Aug 15 2010
Edited by M. F. Hasler, Dec 31 2012

A154300 Primes of the form (1+2+...+m)/57 = A000217(m)/57.

Original entry on oeis.org

3, 13, 29, 113
Offset: 1

Views

Author

Keywords

Comments

Original definition: "Primes of the form : 1/x+2/x+3/x+4/x+5/x+6/x+7/x+..., x=57."
Primes which are some triangular number divided by 57. Finiteness of the sequence follows along the reasoning in A154297.
The corresponding m-values are m=18,38,57,113. It is clear that for m>2*57, T(m)/57 = m(m+1)/114 cannot be a prime, since then each factor in the numerator is larger than the denominator. See A154304 for further comments and PARI code. - M. F. Hasler, Jan 06 2013

Crossrefs

Programs

  • Mathematica
    lst={};s=0;Do[s+=n/57;If[Floor[s]==s,If[PrimeQ[s],AppendTo[lst,s]]],{n,0,2*9!}];lst
    Select[Accumulate[Range[1000]]/57,PrimeQ] (* Harvey P. Dale, Jun 24 2015 *)
  • PARI
    d=57*2;for(m=1,999,(m^2+m)%d==0&isprime((m^2+m)/d)&print1(m",")) \\ print the m-values(!) - use A154304(57) to get A154300 as a vector. \\ - M. F. Hasler, Jan 06 2013

Extensions

Keywords fini,full added by R. J. Mathar, Aug 15 2010
Edited by M. F. Hasler, Jan 06 2013

A154301 Primes of the form (1+2+...+m)/75 = A000217(m)/75.

Original entry on oeis.org

17, 37, 149, 151
Offset: 1

Views

Author

Keywords

Comments

Original definition: "Primes of the form : 1/x+2/x+3/x+4/x+5/x+6/x+7/x+..., x=75."
The corresponding m-values are m=50,74,149,150. It is clear that for m>2*75, T(m)/75 = m(m+1)/150 cannot be a prime, since then each factor in the numerator is larger than the denominator. See A154304 for further comments and PARI code. - M. F. Hasler, Jan 06 2013

Crossrefs

Programs

  • Mathematica
    lst={};s=0;Do[s+=n/75;If[Floor[s]==s,If[PrimeQ[s],AppendTo[lst,s]]],{n,0,3*9!}];lst
  • PARI
    d=75*2;for(m=1,999,(m^2+m)%d==0&isprime((m^2+m)/d)&print1(m",")) \\ print the m-values(!) - use A154304(75) to get A154301 as a vector. \\ - M. F. Hasler, Jan 06 2013

Extensions

Keywords fini,full added by R. J. Mathar, Aug 15 2010
Edited by M. F. Hasler, Jan 06 2013

A154302 Primes of the form (1+2+...+m)/87 = A000217(m)/87.

Original entry on oeis.org

5, 19, 43, 173
Offset: 1

Views

Author

Keywords

Comments

Original definition: "Primes of the form : 1/x+2/x+3/x+4/x+5/x+6/x+7/x+..., x=87."
The corresponding m-values are m=29,57,86,173. It is clear that for m>2*87, T(m)/87 = m(m+1)/174 cannot be a prime, since then each factor in the numerator is larger than the denominator. See A154304 for further comments and PARI code. - M. F. Hasler, Jan 06 2013

Crossrefs

Programs

  • Mathematica
    lst={};s=0;Do[s+=n/87;If[Floor[s]==s,If[PrimeQ[s],AppendTo[lst,s]]],{n,0,4*9!}];lst
  • PARI
    d=87*2;for(m=1,999,(m^2+m)%d==0&isprime((m^2+m)/d)&print1(m",")) \\ print the m-values(!) - use A154304(87) to get A154302 as a vector. \\ - M. F. Hasler, Jan 06 2013

Extensions

Edited by M. F. Hasler, Jan 06 2013

A164578 Integers of the form (k+1)*(2k+1)/12.

Original entry on oeis.org

10, 23, 65, 94, 168, 213, 319, 380, 518, 595, 765, 858, 1060, 1169, 1403, 1528, 1794, 1935, 2233, 2390, 2720, 2893, 3255, 3444, 3838, 4043, 4469, 4690, 5148, 5385, 5875, 6128, 6650, 6919, 7473, 7758, 8344, 8645, 9263, 9580, 10230, 10563, 11245, 11594
Offset: 1

Views

Author

Keywords

Comments

This can also be defined as integer averages of the first k halved squares, 1^2/2, 2^2/2, 3^2/2,... , 3^k/2, because sum_{j=1..k} j^2/2 = k*(k+1)*(2k+1)/12. The generating k are in A168489.

Crossrefs

Programs

  • Mathematica
    s=0;lst={};Do[a=(s+=(n^2)/2)/n;If[Mod[a,1]==0,AppendTo[lst,a]],{n,2*6!}];lst
    Select[Table[((n+1)(2n+1))/12,{n,300}],IntegerQ] (* or *) LinearRecurrence[ {1,2,-2,-1,1},{10,23,65,94,168},60] (* Harvey P. Dale, Jun 14 2017 *)
  • PARI
    Vec(x*(10+13*x+22*x^2+3*x^3)/((1-x)^3*(1+x)^2) + O(x^100)) \\ Colin Barker, Jan 26 2016

Formula

a(n) = +a(n-1) +2*a(n-2) -2*a(n-3) -a(n-4) +a(n-5). G.f. x*(-10-13*x-22*x^2-3*x^3) / ((1+x)^2*(x-1)^3). - R. J. Mathar, Jan 25 2011
From Colin Barker, Jan 26 2016: (Start)
a(n) = (24*n^2+6*n-(-1)^n*(8*n+1)+1)/4.
a(n) = (12*n^2-n)/2 for n even.
a(n) = (12*n^2+7*n+1)/2 for n odd.
(End)

A193828 Even generalized pentagonal numbers.

Original entry on oeis.org

0, 2, 12, 22, 26, 40, 70, 92, 100, 126, 176, 210, 222, 260, 330, 376, 392, 442, 532, 590, 610, 672, 782, 852, 876, 950, 1080, 1162, 1190, 1276, 1426, 1520, 1552, 1650, 1820, 1926, 1962, 2072, 2262, 2380, 2420, 2542, 2752, 2882, 2926, 3060, 3290, 3432, 3480
Offset: 0

Views

Author

Omar E. Pol, Aug 19 2011

Keywords

Comments

Even numbers in A001318.
Exponents in the expansion of Sum_{n >= 0} q^(2*n)/(Product_{k = 1..2*n} 1 + q^(2*k)) = 1 + q^2 - q^12 - q^22 + q^26 + q^40 - - + + ... (follows from Berndt et al., Theorem 3.3). Cf. A067589. - Peter Bala, Jan 21 2025

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-2*x*(x^2 - x + 1)*(x^2 + 4*x + 1)/((x - 1)^3*(x^2 + 1)^2), {x, 0, 50}], x] (* G. C. Greubel, Jun 06 2017 *)
    LinearRecurrence[{3,-5,7,-7,5,-3,1},{0,2,12,22,26,40,70},50] (* Harvey P. Dale, Apr 09 2019 *)
  • PARI
    my(x='x+O('x^50)); concat([0], Vec(-2*x*(x^2-x+1)*(x^2+4*x+1)/((x-1)^3*(x^2+1)^2))) \\ G. C. Greubel, Jun 06 2017

Formula

a(n) = A000217(A108752(n+1))/3 = 2*A154293(n+1).
G.f.: -2*x*(x^2-x+1)*(x^2+4*x+1)/((x-1)^3*(x^2+1)^2). - Colin Barker, Sep 12 2012
Sum_{n>=1} 1/a(n) = 6 - (1+4/sqrt(3))*Pi/2. - Amiram Eldar, Mar 18 2022

A154298 Primes of the form (1+...+m)/33 = A000217(m)/33, for some m.

Original entry on oeis.org

2, 7, 17, 67
Offset: 1

Views

Author

Keywords

Comments

Primes which are some triangular number A000217 divided by 33. Finiteness is shown with the same strategy as in A154297.
Original definition: Primes of the form : 1/x+2/x+3/x+4/x+5/x+6/x+7/x+..., x=33.
The corresponding m-values are m=11, 21, 33, 66 (cf. A154296). It is clear that for m>66, A000217(m)/33 = m(m+1)/66 cannot be a prime. - M. F. Hasler, Dec 31 2012

Crossrefs

Programs

  • Mathematica
    lst={};s=0;Do[s+=n/33;If[Floor[s]==s,If[PrimeQ[s],AppendTo[lst,s]]],{n,0,9!}];lst
    Select[Accumulate[Range[200]]/33,PrimeQ] (* Harvey P. Dale, Aug 11 2025 *)
  • PARI
    select(x->denominator(x)==1 & isprime(x), vector(66, m, m^2+m)/66)  \\ - M. F. Hasler, Dec 31 2012

Extensions

Edited by M. F. Hasler, Dec 31 2012

A154299 Primes of the form (1+...+m)/51 = A000217(m)/51.

Original entry on oeis.org

3, 11, 101, 103
Offset: 1

Views

Author

Keywords

Comments

Primes p of the form k*(k+1)/(2*51): There is a finite set of solutions to 2*3*17*p=k*(k+1). - R. J. Mathar, Aug 15 2010
Original definition: "Primes of the form : 1/x+2/x+3/x+4/x+5/x+6/x+7/x+..., x=51."
The corresponding m-values are m=17, 33, 101, 102 (cf. A154296-A154304, see the latter for more comments and PARI code). It is clear that for m>102, A000217(m)/51 = m(m+1)/102 has at least 2 factors and hence cannot be prime. - M. F. Hasler, Dec 31 2012

Crossrefs

Programs

  • Mathematica
    lst={};s=0;Do[s+=n/51;If[Floor[s]==s,If[PrimeQ[s],AppendTo[lst,s]]],{n,0,9!}];lst
    Select[Accumulate[Range[1000]/51],PrimeQ] (* Harvey P. Dale, Jun 21 2012 *)
  • PARI
    M=51*2;select(x->denominator(x)==1 & isprime(x), vector(M, m, m^2+m)/M)  \\ M. F. Hasler, Dec 31 2012

Extensions

Keywords fini,full added by R. J. Mathar, Aug 15 2010

A164579 Integer averages of halves of first cubes of natural numbers (n^3)/2 for some n.

Original entry on oeis.org

6, 56, 81, 198, 480, 578, 950, 1656, 1875, 2646, 3968, 4356, 5670, 7800, 8405, 10406, 13536, 14406, 17238, 21560, 22743, 26550, 32256, 33800, 38726, 46008, 47961, 54150, 63200, 65610, 73206, 84216, 87131, 96278, 109440, 112908, 123750, 139256
Offset: 1

Views

Author

Keywords

Comments

Also, integers of the form (1/8)*n*(n+1)^2 for some n. - Zak Seidov, Aug 17 2009

Examples

			1/2, 9/4, 6, 25/2, 45/2, 147/4, 56, 81, ...
		

Crossrefs

Programs

  • Mathematica
    s=0;lst={};Do[a=(s+=(n^3)/2)/n;If[Mod[a,1]==0,AppendTo[lst,a]],{n,3*5!}];lst
    LinearRecurrence[{1,0,3,-3,0,-3,3,0,1,-1},{6,56,81,198,480,578,950,1656,1875,2646},40] (* Harvey P. Dale, Jul 26 2017 *)
    Module[{nn=200,ac},ac=Accumulate[Range[nn]^3/2];Select[#[[1]]/#[[2]]&/@ Thread[{ac,Range[nn]}],IntegerQ]] (* Harvey P. Dale, Jan 28 2020 *)
  • PARI
    forstep(n=3, 150, [4,1,3], print1(n*(n+1)^2>>3, ", ")); \\ Charles R Greathouse IV, Nov 02 2009

Formula

G.f.: ( x*(6+50*x+25*x^2+99*x^3+132*x^4+23*x^5+39*x^6+10*x^7) ) / ( (1+x+x^2)^3*(x-1)^4 ). - R. J. Mathar, Jan 25 2011

A180926 Numbers k such that 6*k and 10*k are triangular numbers.

Original entry on oeis.org

0, 1, 63, 3906, 242110, 15006915, 930186621, 57656563588, 3573776755836, 221516502298245, 13730449365735355, 851066344173293766, 52752382889378478138, 3269796672797292350791, 202674641330542747270905
Offset: 1

Views

Author

Vladimir Pletser, Sep 25 2010

Keywords

Comments

From Klaus Purath, Jul 25 2024: (Start)
Numbers k such that 48k + 1 is a square as well as the sum of two consecutive terms.
a(n) = t(n-1)*t(n)/(8*t(1)^2) where (t) is any recurrence t(k) = 8*t(k-1) - t(k-2) with t(0) = 0 and arbitrary t(1) != 0. (End)

Crossrefs

Subsequence of A154293.

Programs

  • Mathematica
    a[1] = 0; a[n_] := a[n] = (62 a[n - 1] + 1 + Sqrt[(48 a[n - 1] + 1)*(80 a[n - 1] + 1)])/2; Array[a, 14] (* Robert G. Wilson v, Sep 27 2010 *)
    Rest[CoefficientList[Series[-x^2/((x - 1) (x^2 - 62 x + 1)), {x, 0, 30}], x]] (* Vincenzo Librandi, Jun 26 2014 *)
    LinearRecurrence[{63,-63,1},{0,1,63},20] (* Harvey P. Dale, Dec 25 2019 *)
  • PARI
    isok(n) = ispolygonal(6*n, 3) && ispolygonal(10*n, 3); \\ Michel Marcus, Jun 25 2014

Formula

a(n) = (62*a(n-1) + 1 + ((48*a(n-1) + 1)*(80*a(n-1) + 1))^(1/2))/2 with a(1)=0.
G.f.: -x^2 / ((x-1)*(x^2-62*x+1)). - Colin Barker, Jun 25 2014
a(n) = (-8+(4+sqrt(15))*(31+8*sqrt(15))^(-n) - (-4+sqrt(15))*(31+8*sqrt(15))^n)/480. - Colin Barker, Mar 03 2016

Extensions

a(8) onwards from Robert G. Wilson v, Sep 27 2010
Previous Showing 11-20 of 24 results. Next