A167938
Number of reduced words of length n in Coxeter group on 24 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
Original entry on oeis.org
1, 24, 552, 12696, 292008, 6716184, 154472232, 3552861336, 81715810728, 1879463646744, 43227663875112, 994236269127576, 22867434189934248, 525950986368487704, 12096872686475217192, 278228071788929995416
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,-253).
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-23*x+275*x^16-253*x^17) )); // G. C. Greubel, Sep 09 2023
-
CoefficientList[Series[(1+t)*(1-t^16)/(1-23*t+275*t^16-253*t^17), {t, 0, 50}], t] (* G. C. Greubel, Jul 01 2016; Sep 09 2023 *)
coxG[{16,253,-22}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Mar 18 2022 *)
-
def A167938_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^16)/(1-23*x+275*x^16-253*x^17) ).list()
A167938_list(40) # G. C. Greubel, Sep 09 2023
A167940
Number of reduced words of length n in Coxeter group on 25 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
Original entry on oeis.org
1, 25, 600, 14400, 345600, 8294400, 199065600, 4777574400, 114661785600, 2751882854400, 66045188505600, 1585084524134400, 38042028579225600, 913008685901414400, 21912208461633945600, 525893003079214694400
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,-276).
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-24*x+299*x^16-276*x^17) )); // G. C. Greubel, Sep 08 2023
-
coxG[{16,276,-23}] (* The coxG program is at A169452 *) (* Harvey P. Dale, May 05 2015 *)
CoefficientList[Series[(1+t)*(1-t^16)/(1-24*t+299*t^16-276*t^17), {t, 0, 50}], t] (* G. C. Greubel, Jul 01 2016; Sep 08 2023 *)
-
def A167940_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^16)/(1-24*x+299*x^16-276*x^17) ).list()
A167940_list(40) # G. C. Greubel, Sep 08 2023
A167947
Number of reduced words of length n in Coxeter group on 32 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
Original entry on oeis.org
1, 32, 992, 30752, 953312, 29552672, 916132832, 28400117792, 880403651552, 27292513198112, 846067909141472, 26228105183385632, 813071260684954592, 25205209081233592352, 781361481518241362912, 24222205927065482250272
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,-465).
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-31*x+495*x^16-465*x^17) )); // G. C. Greubel, Sep 07 2023
-
coxG[{16,465,-30}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Apr 16 2015 *)
CoefficientList[Series[(1+t)*(1-t^16)/(1-31*t+495*t^16-465*t^17), {t, 0, 50}], t] (* G. C. Greubel, Jul 02 2016; Sep 07 2023 *)
-
def A167947_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^16)/(1-31*x+495*x^16-465*x^17) ).list()
A167947_list(40) # G. C. Greubel, Sep 07 2023
A167949
Number of reduced words of length n in Coxeter group on 33 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
Original entry on oeis.org
1, 33, 1056, 33792, 1081344, 34603008, 1107296256, 35433480192, 1133871366144, 36283883716608, 1161084278931456, 37154696925806592, 1188950301625810944, 38046409652025950208, 1217485108864830406656, 38959523483674573012992
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,-496).
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-32*x+527*x^16-496*x^17) )); // G. C. Greubel, Sep 07 2023
-
CoefficientList[Series[(1+t)*(1-t^16)/(1-32*t+527*t^16-496*t^17), {t, 0, 50}], t] (* G. C. Greubel, Jul 02 2016; Sep 07 2023 *)
coxG[{16,496,-31}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Sep 22 2020 *)
-
def A167949_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^16)/(1-32*x+527*x^16-496*x^17) ).list()
A167949_list(40) # G. C. Greubel, Sep 07 2023
A167962
Number of reduced words of length n in Coxeter group on 46 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
Original entry on oeis.org
1, 46, 2070, 93150, 4191750, 188628750, 8488293750, 381973218750, 17188794843750, 773495767968750, 34807309558593750, 1566328930136718750, 70484801856152343750, 3171816083526855468750, 142731723758708496093750
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,-990).
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-45*x+1034*x^16-990*x^17) )); // G. C. Greubel, Jan 17 2023
-
CoefficientList[Series[(1+t)*(1-t^16)/(1-45*t+1034*t^16-990*t^17), {t, 0, 50}], t] (* G. C. Greubel, Jul 03 2016 *)
coxG[{16,990,-44,40}] (* The coxG program is at A169452 *) (* G. C. Greubel, Jan 17 2023 *)
-
def A167962_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^16)/(1-45*x+1034*x^16-990*x^17) ).list()
A167962_list(40) # G. C. Greubel, Jan 17 2023
A167978
Number of reduced words of length n in Coxeter group on 47 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
Original entry on oeis.org
1, 47, 2162, 99452, 4574792, 210440432, 9680259872, 445291954112, 20483429889152, 942237774900992, 43342937645445632, 1993775131690499072, 91713656057762957312, 4218828178657096036352, 194066096218226417672192
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,-1035).
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^17)/(1-46*x+1081*x^16-1035*x^17) )); // G. C. Greubel, Jan 17 2023
-
CoefficientList[Series[(1+t)*(1-t^16)/(1-46*t+1081*t^16-1035*t^17), {t, 0,50}], t] (* G. C. Greubel, Jul 03 2016; Jan 17 2023 *)
coxG[{16,1035,-45}] (* The coxG program is at A169452 *) (* G. C. Greubel, Jan 17 2023 *)
-
def A167978_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^17)/(1-46*x+1081*x^16-1035*x^17) ).list()
A167978_list(30) # G. C. Greubel, Jan 17 2023
A167980
Number of reduced words of length n in Coxeter group on 48 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
Original entry on oeis.org
1, 48, 2256, 106032, 4983504, 234224688, 11008560336, 517402335792, 24317909782224, 1142941759764528, 53718262708932816, 2524758347319842352, 118663642324032590544, 5577191189229531755568, 262127985893787992511696
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (46,46,46,46,46,46,46,46,46,46,46,46,46,46,46,-1081).
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^17)/(1-47*x+1127*x^16-1081*x^17) )); // G. C. Greubel, Jan 17 2023
-
coxG[{16,1081,-46}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jun 12 2016 *)
CoefficientList[Series[(1+t)*(1-t^17)/(1-47*t+1127*t^16-1081*t^17), {t, 0,50}], t] (* G. C. Greubel, Jul 03 2016; Jan 17 2023 *)
-
def A167980_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^17)/(1-47*x+1127*x^16-1081*x^17) ).list()
A167980_list(30) # G. C. Greubel, Jan 17 2023
A167988
Number of reduced words of length n in Coxeter group on 49 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
Original entry on oeis.org
1, 49, 2352, 112896, 5419008, 260112384, 12485394432, 599298932736, 28766348771328, 1380784741023744, 66277667569139712, 3181328043318706176, 152703746079297896448, 7329779811806299029504, 351829430966702353416192
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,-1128).
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-48*x+1175*x^16-1128*x^17) )); // G. C. Greubel, Jan 14 2023
-
coxG[{16,1128,-47}] (* The coxG program is at A169452 *) (* Harvey P. Dale, May 05 2015 *)
CoefficientList[Series[(1+x)*(1-x^16)/(1-48*x+1175*x^16-1128*x^17), {x, 0, 50}], x] (* G. C. Greubel, Jul 03 2016; Jan 14 2023 *)
-
def A167988_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^16)/(1-48*x+1175*x^16-1128*x^17) ).list()
A167988_list(40) # G. C. Greubel, Jan 14 2023
A167989
Number of reduced words of length n in Coxeter group on 50 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
Original entry on oeis.org
1, 50, 2450, 120050, 5882450, 288240050, 14123762450, 692064360050, 33911153642450, 1661646528480050, 81420679895522450, 3989613314880600050, 195491052429149402450, 9579061569028320720050, 469374016882387715282450
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,-1176).
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-49*x+1224*x^16-1176*x^17) )); // G. C. Greubel, Jan 14 2023
-
CoefficientList[Series[(1+x)*(1-x^16)/(1-49*x+1224*x^16-1176*x^17), {x, 0, 50}], x] (* G. C. Greubel, Jul 03 2016; Jan 14 2023 *)
coxG[{16, 1176, -48, 10}] (* The coxG program is at A169452 *) (* G. C. Greubel, Jan 14 2023 *)
-
def A167989_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^16)/(1-49*x+1224*x^16-1176*x^17) ).list()
A167989_list(40) # G. C. Greubel, Jan 14 2023
A154636
a(n) is the ratio of the sum of the bends of the circles that are drawn in the n-th generation of Apollonian packing to the sum of the bends of the circles in the initial configuration of 3 circles.
Original entry on oeis.org
1, 2, 18, 138, 1050, 7986, 60738, 461946, 3513354, 26720994, 203227890, 1545660138, 11755597434, 89407799058, 679995600162, 5171741404122, 39333944432490, 299156331247554, 2275248816682962, 17304521539721034, 131610425867719386, 1000969842322591986
Offset: 0
Starting from three circles with bends -1,2,2 summing to 3, the first derived generation consists of two circles, each with bend 3. So a(1) is (3+3)/3 = 2.
-
CoefficientList[Series[(5 z^2 - 6 z + 1)/(3 z^2 - 8 z + 1), {z, 0, 100}], z] (* and *) LinearRecurrence[{8, -3}, {1, 2, 18}, 100] (* Vladimir Joseph Stephan Orlovsky, Jul 03 2011 *)
-
Vec((1 - x)*(1 - 5*x) / (1 - 8*x + 3*x^2) + O(x^30)) \\ Colin Barker, Jul 15 2017
Comments