cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 138 results. Next

A130645 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+439)^2 = y^2.

Original entry on oeis.org

0, 44, 1121, 1317, 1541, 7644, 8780, 10080, 45621, 52241, 59817, 266960, 305544, 349700, 1557017, 1781901, 2039261, 9076020, 10386740, 11886744, 52899981, 60539417, 69282081, 308324744, 352850640, 403806620, 1797049361, 2056565301, 2353558517, 10473972300
Offset: 1

Views

Author

Mohamed Bouhamida, Jun 20 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+439, y).
Corresponding values y of solutions (x, y) are in A159890.
For the generic case x^2+(x+p)^2 = y^2 with p = m^2-2 a (prime) number > 7 in A028871, see A118337.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (443+42*sqrt(2))/439 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (450483+287918*sqrt(2))/439^2 for n mod 3 = 0.

Crossrefs

Cf. A159890, A028871, A118337, A118675, A118676, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A159891 (decimal expansion of (443+42*sqrt(2))/439), A159892 (decimal expansion of (450483+287918*sqrt(2))/439^2).

Programs

  • Mathematica
    LinearRecurrence[{1, 0, 6, -6, 0, -1, 1}, {0, 44, 1121, 1317, 1541, 7644, 8780}, 50] (* Vladimir Joseph Stephan Orlovsky, Feb 14 2012 *)
  • PARI
    {forstep(n=0, 100000000, [1, 3], if(issquare(2*n^2+878*n+192721), print1(n, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6)+878 for n > 6; a(1)=0, a(2)=44, a(3)=1121, a(4)=1317, a(5)=1541, a(6)=7644.
G.f.: x*(44+1077*x+196*x^2-40*x^3-359*x^4-40*x^5) / ((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 439*A001652(k) for k >= 0.

Extensions

Edited and two terms added by Klaus Brockhaus, Apr 30 2009

A130646 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+727)^2 = y^2.

Original entry on oeis.org

0, 56, 1925, 2181, 2465, 13056, 14540, 16188, 77865, 86513, 96117, 455588, 505992, 561968, 2657117, 2950893, 3277145, 15488568, 17200820, 19102356, 90275745, 100255481, 111338445, 526167356, 584333520, 648929768, 3066729845
Offset: 1

Views

Author

Mohamed Bouhamida, Jun 20 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+727, y).
Corresponding values y of solutions (x, y) are in A159893.
For the generic case x^2+(x+p)^2 = y^2 with p = m^2-2 a (prime) number > 7 in A028871, see A118337.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (731+54*sqrt(2))/727 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (1304787+843542*sqrt(2))/727^2 for n mod 3 = 0.

Crossrefs

Cf. A159893, A028871, A118337, A118675, A118676, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A159894 (decimal expansion of (731+54*sqrt(2))/727), A159895 (decimal expansion of (1304787+843542*sqrt(2))/727^2).

Programs

  • Mathematica
    LinearRecurrence[{1,0,6,-6,0,-1,1},{0,56,1925,2181,2465,13056,14540},40] (* or *) RecurrenceTable[{a[1]==0,a[2]==56,a[3]==1925,a[4]==2181,a[5] == 2465, a[6] == 13056, a[n] ==6a[n-3]-a[n-6]+1454},a,{n,40}] (* Harvey P. Dale, Jan 16 2013 *)
  • PARI
    {forstep(n=0, 100000000, [1, 3], if(issquare(2*n^2+1454*n+528529), print1(n, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6)+1454 for n > 6; a(1)=0, a(2)=56, a(3)=1925, a(4)=2181, a(5)=2465, a(6)=13056.
G.f.: x*(56+1869*x+256*x^2-52*x^3-623*x^4-52*x^5) / ((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 727*A001652(k) for k >= 0.

Extensions

Edited and one term added by Klaus Brockhaus, Apr 30 2009

A130647 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+839)^2 = y^2.

Original entry on oeis.org

0, 60, 2241, 2517, 2821, 15180, 16780, 18544, 90517, 99841, 110121, 529600, 583944, 643860, 3088761, 3405501, 3754717, 18004644, 19850740, 21886120, 104940781, 115700617, 127563681, 611641720, 674354640, 743497644, 3564911217
Offset: 1

Views

Author

Mohamed Bouhamida, Jun 20 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+839, y).
Corresponding values y of solutions (x, y) are in A159896.
For the generic case x^2+(x+p)^2 = y^2 with p = m^2-2 a (prime) number > 7 in A028871, see A118337.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (843+58*sqrt(2))/839 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (1760979+1141390*sqrt(2))/839^2 for n mod 3 = 0.

Crossrefs

Cf. A159896, A028871, A118337, A130645, A130646, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A159897 (decimal expansion of (843+58*sqrt(2))/839), A159898 (decimal expansion of (1760979+1141390*sqrt(2))/839^2).

Programs

  • Magma
    I:=[0,60,2241,2517,2821,15180,16780]; [n le 7 select I[n] else Self(n-1) +6*Self(n-3) -6*Self(n-4) -Self(n-6) +Self(n=7): n in [1..30]]; // G. C. Greubel, May 17 2018
  • Mathematica
    LinearRecurrence[{1,0,6,-6,0,-1,1},{0,60,2241,2517,2821,15180,16780},30] (* Harvey P. Dale, Jun 19 2014 *)
  • PARI
    {forstep(n=0, 100000000, [1, 3], if(issquare(2*n^2+1678*n+703921), print1(n, ",")))}
    

Formula

a(n) = 6*a(n-3) -a(n-6) +1678 for n > 6; a(1)=0, a(2)=60, a(3)=2241, a(4)=2517, a(5)=2821, a(6)=15180.
G.f.: x*(60+2181*x+276*x^2-56*x^3-727*x^4-56*x^5)/((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 839*A001652(k) for k >= 0.

Extensions

Edited and two terms added by Klaus Brockhaus, Apr 30 2009

A157257 Positive numbers y such that y^2 is of the form x^2+(x+41)^2 with integer x.

Original entry on oeis.org

29, 41, 85, 89, 205, 481, 505, 1189, 2801, 2941, 6929, 16325, 17141, 40385, 95149, 99905, 235381, 554569, 582289, 1371901, 3232265, 3393829, 7996025, 18839021, 19780685, 46604249, 109801861, 115290281, 271629469, 639972145, 671961001
Offset: 1

Views

Author

Klaus Brockhaus, Feb 26 2009

Keywords

Comments

(-20, a(1)) and (A129288(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+41)^2 = y^2.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (7+2*sqrt(2))/(7-2*sqrt(2)) for n mod 3 = {0, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (3+2*sqrt(2))*(7-2*sqrt(2))^2/(7+2*sqrt(2))^2 for n mod 3 = 1.

Examples

			(-20, a(1)) = (-20, 29) is a solution: (-20)^2+(-20+41)^2 = 400+441 = 841 = 29^2.
(A129288(1), a(2)) = (0, 41) is a solution: 0^2+(0+41)^2 = 1681 = 41^2.
(A129288(3), a(4)) = (39, 89) is a solution: 39^2+(39+41)^2 = 1521+6400 = 7921 = 89^2.
		

Crossrefs

Cf. A129288, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A157258 (decimal expansion of 7+2*sqrt(2)), A157259 (decimal expansion of 7-2*sqrt(2)), A157260 (decimal expansion of (7+2*sqrt(2))/(7-2*sqrt(2))).

Programs

  • Magma
    Q:=Rationals(); R:=PowerSeriesRing(Q, 40); Coefficients(R!((1-x)*(29+70*x+155*x^2+70*x^3+29*x^4)/(1-6*x^3+ x^6))) // G. C. Greubel, Feb 04 2018
  • Mathematica
    CoefficientList[Series[(1-x)*(29+70*x+155*x^2+70*x^3+29*x^4)/(1-6*x^3+ x^6), {x,0,50}], x] (* G. C. Greubel, Feb 04 2018 *)
  • PARI
    {forstep(n=-20, 500000000, [3 ,1], if(issquare(n^2+(n+41)^2, &k), print1(k, ",")))}
    
  • PARI
    x='x+O('x^30); Vec((1-x)*(29+70*x+155*x^2+70*x^3+29*x^4)/(1-6*x^3+ x^6)) \\ G. C. Greubel, Feb 04 2018
    

Formula

a(n) = 6*a(n-3) - a(n-6) for n > 6; a(1)=29, a(2)=41, a(3)=85, a(4)=89, a(5)=205, a(6)=481.
G.f.: (1-x)*(29+70*x+155*x^2+70*x^3+29*x^4)/(1-6*x^3+x^6).
a(3*k-1) = 41*A001653(k) for k >= 1.

A378352 Decimal expansion of the volume of a (small) triakis octahedron with unit shorter edge length.

Original entry on oeis.org

2, 9, 1, 4, 2, 1, 3, 5, 6, 2, 3, 7, 3, 0, 9, 5, 0, 4, 8, 8, 0, 1, 6, 8, 8, 7, 2, 4, 2, 0, 9, 6, 9, 8, 0, 7, 8, 5, 6, 9, 6, 7, 1, 8, 7, 5, 3, 7, 6, 9, 4, 8, 0, 7, 3, 1, 7, 6, 6, 7, 9, 7, 3, 7, 9, 9, 0, 7, 3, 2, 4, 7, 8, 4, 6, 2, 1, 0, 7, 0, 3, 8, 8, 5, 0, 3, 8, 7, 5, 3
Offset: 1

Views

Author

Paolo Xausa, Nov 23 2024

Keywords

Comments

The (small) triakis octahedron is the dual polyhedron of the truncated cube.

Examples

			2.9142135623730950488016887242096980785696718753769...
		

Crossrefs

Cf. A378351 (surface area), A378353 (inradius), A201488 (midradius), A378354 (dihedral angle).
Cf. A377299 (volume of a truncated cube with unit edge).
Cf. A156035.
Essentially the same as A002193 and A188582.

Programs

  • Mathematica
    First[RealDigits[Sqrt[2] + 3/2, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TriakisOctahedron", "Volume"], 10, 100]]

Formula

Equals sqrt(2) + 3/2 = A002193 + 3/2.
Equals A156035/2. - Hugo Pfoertner, Nov 24 2024

A072280 Product representation of the Pell numbers A000129 and A002203.

Original entry on oeis.org

2, 1, 7, 6, 41, 5, 239, 34, 199, 29, 8119, 33, 47321, 169, 961, 1154, 1607521, 197, 9369319, 1121, 32641, 5741, 318281039, 1153, 45245801, 33461, 7761799, 38081, 63018038201, 1345, 367296043199, 1331714, 37667521, 1136689, 1273319041, 39201, 72722761475561
Offset: 1

Views

Author

Miklos Kristof, Jul 10 2002

Keywords

Comments

Define the silver mean constants h=1+sqrt(2) = A014176, h^2=1+2h = A156035, and 1/h=h-2.
Let Phi(n,x) be the n-th cyclotomic polynomial A013595, so that x^n-1 = Product_{d | n} Phi(d, x). Let g(n) be the order of Phi(n, x), A000010. Then a(n)=(h-2)^g(n)*Phi(n, h^2) if n <> 2.
The Binet representations of the Pell numbers yields:
For even n, A000129(n) = Product_{d|n} a(d).
For odd n, A000129(n)=Product_{ d|n} a(2d).
For odd prime p, a(p)=A002203(p)/2, a(2p)=A000129(p).
a(2^(k+1))=A002203(2^k).
For odd n, A002203(n)=Product_{ d|n} a(d).
For k>0 and odd n, A002203(n*2^k)=Product_{ d | n} a(d*2^(k+1)).

Examples

			For even n=12, A000129(12) = a(1)*a(2)*a(3)*a(4)*a(6)*a(12) = 2*1*7*6*5*33 = 13860.
For odd n=9, A000129(9) = a(2)*a(6)*a(18)= 1*5*197 = 985.
For even n=8, A002203(12) = a(8)*a(24)=34*1153 = 39202.
For odd n=21, A002203(21) = a(1)*a(3)*a(7)*a(21) = 2*7*239*32641 = 109216786.
		

Crossrefs

Programs

  • Maple
    A072280 := proc(n) if n <= 2 then 3-n ; else g := numtheory[phi](n) ; h := 1+sqrt(2) ; (h-2)^g*numtheory[cyclotomic](n,h^2) ; simplify(expand(%)) ; end if; end proc:
    seq(A072280(n),n=1..80) ; # R. J. Mathar, Nov 27 2009
  • Mathematica
    a[n_] := If[n <= 2, 3-n, g = EulerPhi[n]; h = 1 + Sqrt[2]; (h - 2)^g*Cyclotomic[n, h^2] // Expand];
    Table[a[n], {n, 1, 80}] (* Jean-François Alcover, May 08 2023, after R. J. Mathar *)

Extensions

Edited and extended by R. J. Mathar, Nov 27 2009

A118611 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+343)^2 = y^2.

Original entry on oeis.org

0, 77, 132, 245, 392, 585, 728, 1029, 1428, 1725, 2352, 3185, 4292, 5117, 6860, 9177, 10904, 14553, 19404, 25853, 30660, 40817, 54320, 64385, 85652, 113925, 151512, 179529, 238728, 317429, 376092, 500045, 664832, 883905, 1047200, 1392237, 1850940, 2192853
Offset: 1

Views

Author

Mohamed Bouhamida, May 08 2006

Keywords

Comments

Also values x of Pythagorean triples (x, x+343, y); 343=7^3.
Corresponding values y of solutions (x, y) are in A157246.
Limit_{n -> oo} a(n)/a(n-7) = 3+2*sqrt(2).
Limit_{n -> oo} a(n)/a(n-1) = (3+2*sqrt(2)) / ((9+4*sqrt(2))/7)^2 for n mod 7 = {1, 2, 4, 5, 6}.
Limit_{n -> oo} a(n)/a(n-1) = ((9+4*sqrt(2))/7)^5 / (3+2*sqrt(2))^2 for n mod 7 = {0, 3}.

Examples

			132^2+(132+343)^2 = 17424+225625 = 243049 = 493^2.
		

Crossrefs

Cf. A157246, A001652, A118576, A118554, A118611, A156035 (decimal expansion of 3+2*sqrt(2)), A156649 (decimal expansion of (9+4*sqrt(2))/7).

Programs

  • Mathematica
    LinearRecurrence[{1, 0, 0, 0, 0, 0, 6, -6, 0, 0, 0, 0, 0, -1, 1}, {0, 77, 132, 245, 392, 585, 728, 1029, 1428, 1725, 2352, 3185, 4292, 5117, 6860}, 50] (* Vladimir Joseph Stephan Orlovsky, Feb 13 2012 *)
  • PARI
    {forstep(n=0, 1400000, [1, 3], if(issquare(n^2+(n+343)^2), print1(n, ",")))}

Formula

a(n) = 6*a(n-7)-a(n-14)+686 for n > 14; a(1)=0, a(2)=77, a(3)=132, a(4)=245, a(5)=392, a(6)=585, a(7)=728, a(8)=1029, a(9)=1428, a(10)=1725, a(11)=2352, a(12)=3185, a(13)=4292, a(14)=5117.
G.f.: x*(77+55*x+113*x^2+147*x^3+193*x^4+143*x^5+301*x^6-63*x^7 -33*x^8-51*x^9-49*x^10-51*x^11-33*x^12-63*x^13)/((1-x)*(1-6*x^7+x^14)).
a(7*k+1) = 343*A001652(k) for k >= 0.

Extensions

Edited by Klaus Brockhaus, Feb 25 2009

A122694 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+761)^2 = y^2.

Original entry on oeis.org

0, 583, 820, 2283, 5440, 6783, 15220, 33579, 41400, 90559, 197556, 243139, 529656, 1153279, 1418956, 3088899, 6723640, 8272119, 18005260, 39190083, 48215280, 104944183, 228418380, 281021083, 611661360, 1331321719, 1637912740
Offset: 1

Views

Author

Mohamed Bouhamida, Jun 03 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+761, y).
Corresponding values y of solutions (x, y) are in A160200.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2) = A156035.
lim_{n -> infinity} a(n)/a(n-1) = (1003+462*sqrt(2))/761 = A160201 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (591603+85478*sqrt(2))/761^2 = A160202 for n mod 3 = 0.

Crossrefs

Programs

  • Magma
    I:=[0,583,820,2283,5440,6783,15220]; [n le 7 select I[n] else Self(n-1) +6*Self(n-3) -6*Self(n-4) -Self(n-6) +Self(n-7): n in [1..30]]; // G. C. Greubel, May 04 2018
  • Mathematica
    LinearRecurrence[{1, 0, 6, -6, 0, -1, 1}, {0, 583, 820, 2283, 5440, 6783, 15220}, 27] (* Jean-François Alcover, Nov 13 2017 *)
  • PARI
    {forstep(n=0, 10000000, [3, 1], if(issquare(2*n^2+1522*n+579121), print1(n, ",")))}
    
  • PARI
    x='x+O('x^30); concat([0], Vec(x*(583 +237*x +1463*x^2 -341*x^3 -79*x^4 -341*x^5)/((1-x)*(1 -6*x^3 +x^6)))) \\ G. C. Greubel, May 04 2018
    

Formula

a(n) = 6*a(n-3) -a(n-6) +1522 for n > 6; a(1)=0, a(2)=583, a(3)=820, a(4)=2283, a(5)=5440, a(6)=6783.
G.f.: x*(583 +237*x +1463*x^2 -341*x^3 -79*x^4 -341*x^5)/((1-x)*(1 -6*x^3 +x^6)).
a(3*k+1) = 761*A001652(k) for k >= 0.

Extensions

Edited and one term added by Klaus Brockhaus, May 18 2009

A129625 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+233)^2 = y^2.

Original entry on oeis.org

0, 75, 432, 699, 1092, 3115, 4660, 6943, 18724, 27727, 41032, 109695, 162168, 239715, 639912, 945747, 1397724, 3730243, 5512780, 8147095, 21742012, 32131399, 47485312, 126722295, 187276080, 276765243, 738592224, 1091525547, 1613106612
Offset: 1

Views

Author

Mohamed Bouhamida, May 30 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+233, y).
Corresponding values y of solutions (x, y) are in A157297.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (251+66*sqrt(2))/233 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (82611+44030*sqrt(2))/233^2 for n mod 3 = 0.

Crossrefs

Cf. A157297, A001652, A129288, A129289, A129298, A156035 (decimal expansion of 3+2*sqrt(2)), A157298 (decimal expansion of (251+66*sqrt(2))/233), A157299 (decimal expansion of (82611+44030*sqrt(2))/233^2).

Programs

  • Magma
    I:=[0,75,432,699,1092,3115,4660]; [n le 7 select I[n] else Self(n-1) + 6*Self(n-3) - 6*Self(n-4) - Self(n-6) + Self(n-7): n in [1..30]]; // G. C. Greubel, Mar 29 2018
  • Mathematica
    LinearRecurrence[{1,0,6,-6,0,-1,1}, {0,75,432,699,1092,3115,4660}, 50] (* G. C. Greubel, Mar 29 2018 *)
  • PARI
    {forstep(n=0, 1700000000, [3, 1], if(issquare(2*n^2+466*n+54289), print1(n, ",")))};
    

Formula

a(n) = 6*a(n-3) -a(n-6) +466 for n > 6; a(1)=0, a(2)=75, a(3)=432, a(4)=699, a(5)=1092, a(6)=3115.
G.f.: x*(75 +357*x +267*x^2 -57*x^3 -119*x^4 -57*x^5)/((1-x)*(1 -6*x^3 +x^6)).
a(3*k+1) = 233*A001652(k) for k >= 0.

Extensions

Edited and two terms added by Klaus Brockhaus, Apr 11 2009

A129640 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+313)^2 = y^2.

Original entry on oeis.org

0, 155, 464, 939, 1764, 3515, 6260, 11055, 21252, 37247, 65192, 124623, 217848, 380723, 727112, 1270467, 2219772, 4238675, 7405580, 12938535, 24705564, 43163639, 75412064, 143995335, 251576880, 439534475, 839267072, 1466298267, 2561795412, 4891607723
Offset: 1

Views

Author

Mohamed Bouhamida, May 31 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+313, y).
Corresponding values y of solutions (x, y) are in A160574.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (363+130*sqrt(2))/313 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (119187+47998*sqrt(2))/313^2 for n mod 3 = 0.

Crossrefs

Cf. A160574, A001652, A129298, A156035 (decimal expansion of 3+2*sqrt(2)), A160575 (decimal expansion of (363+130*sqrt(2))/313), A160576 (decimal expansion of (119187+47998*sqrt(2))/313^2).

Programs

  • Mathematica
    LinearRecurrence[{1, 0, 6, -6, 0, -1, 1}, {0, 155, 464, 939, 1764, 3515, 6260}, 50] (* Vladimir Joseph Stephan Orlovsky, Feb 13 2012 *)
  • PARI
    {forstep(n=0, 10000000, [3, 1], if(issquare(2*n^2+626*n+97969), print1(n, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6)+626 for n > 6; a(1)=0, a(2)=155, a(3)=464, a(4)=939, a(5)=1764, a(6)=3515.
G.f.: x*(155+309*x+475*x^2-105*x^3-103*x^4-105*x^5)/((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 313*A001652(k) for k >= 0.

Extensions

Edited and two terms added by Klaus Brockhaus, Jun 08 2009
Previous Showing 41-50 of 138 results. Next