cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A156160 a(n) = 34*a(n-1)-a(n-2)-2312 for n > 2; a(1)=169, a(2)=2809.

Original entry on oeis.org

169, 2809, 93025, 3157729, 107267449, 3643933225, 123786459889, 4205095700689, 142849467361225, 4852676794578649, 164848161548310529, 5599984815847977025, 190234635577282906009, 6462377624811770824969
Offset: 1

Views

Author

Klaus Brockhaus, Feb 09 2009

Keywords

Comments

lim_{n -> infinity} a(n)/a(n-1) = (17+12*sqrt(2)).

Examples

			a(3) = 34*a(2)-a(1)-2312 = 34*2809-169-2312 = 93025.
		

Crossrefs

First trisection of A156159.
Cf. A156164 (decimal expansion of (17+12*sqrt(2))).

Programs

  • Mathematica
    LinearRecurrence[{35,-35,1},{169,2809,93025},20] (* Harvey P. Dale, Nov 15 2014 *)
  • PARI
    {m=14; v=concat([169, 2809], vector(m-2)); for(n=3, m, v[n]=34*v[n-1]-v[n-2]-2312); v}

Formula

a(n) = (578+ (2211-1550*sqrt(2))*(17+12*sqrt(2))^n+(2211+1550*sqrt(2))*(17-12*sqrt(2))^n)/8.
G.f.: x*(169-3106*x+625*x^2)/((1-x)*(1-34*x+x^2)).

Extensions

G.f. corrected by Klaus Brockhaus, Sep 23 2009

A156161 a(n) = 34*a(n-1)-a(n-2)-2312 for n > 2; a(1)=289, a(2)=7225.

Original entry on oeis.org

289, 7225, 243049, 8254129, 280395025, 9525174409, 323575532569, 10992042930625, 373405884106369, 12684808016683609, 430910066683134025, 14638257459209870929, 497269843546452475249, 16892536423120174285225
Offset: 1

Views

Author

Klaus Brockhaus, Feb 09 2009

Keywords

Comments

lim_{n -> infinity} a(n)/a(n-1) = (17+12*sqrt(2)).

Examples

			a(3) = 34*a(2)-a(1)-2312 = 34*7225-289-2312 = 243049.
		

Crossrefs

Second trisection of A156159.
Equals 289*A008844. - Klaus Brockhaus, Sep 23 2009
Cf. A156164 (decimal expansion of (17+12*sqrt(2))).

Programs

  • Mathematica
    RecurrenceTable[{a[1]==289,a[2]==7225,a[n]==34a[n-1]-a[n-2]-2312},a,{n,20}] (* or *) LinearRecurrence[{35,-35,1},{289,7225,243049},20] (* Harvey P. Dale, Dec 11 2013 *)
  • PARI
    {m=14; v=concat([289, 7225], vector(m-2)); for(n=3, m, v[n]=34*v[n-1]-v[n-2]-2312); v}

Formula

a(n) = (578+(867-578*sqrt(2))*(17+12*sqrt(2))^n+(867+578*sqrt(2))*(17-12*sqrt(2))^n)/8.
G.f.: x*(289-2890*x+289*x^2)/((1-x)*(1-34*x+x^2)). [corrected by Klaus Brockhaus, Sep 23 2009]
a(1)=289, a(2)=7225, a(3)=243049, a(n) = 35*a(n-1)-35*a(n-2)+a(n-3). - Harvey P. Dale, Dec 11 2013

A156162 a(n) = 34*a(n-1)-a(n-2)-2312 for n > 2; a(1)=625, a(2)=18769.

Original entry on oeis.org

625, 18769, 635209, 21576025, 732947329, 24898630849, 845820499225, 28732998340489, 976076123075089, 33157855186210225, 1126391000208070249, 38264136151888175929, 1299854238163989909025, 44156779961423768728609
Offset: 1

Views

Author

Klaus Brockhaus, Feb 09 2009

Keywords

Comments

lim_{n -> infinity} a(n)/a(n-1) = (17+12*sqrt(2)).

Examples

			a(3) = 34*a(2)-a(1)-2312 = 34*18769-625-2312 = 635209.
		

Crossrefs

Third trisection of A156159.
Cf. A156164 (decimal expansion of (17+12*sqrt(2))).

Programs

  • Mathematica
    RecurrenceTable[{a[1]==625,a[2]==18769,a[n]==34a[n-1]-a[n-2]-2312},a,{n,20}] (* or *) LinearRecurrence[{35,-35,1},{625,18769,635209},20] (* Harvey P. Dale, Sep 29 2016 *)
  • PARI
    {m=14; v=concat([625 ,18769], vector(m-2)); for(n=3, m, v[n]=34*v[n-1]-v[n-2]-2312); v}

Formula

a(n) = (578+(387-182*sqrt(2))*(17+12*sqrt(2))^n+(387+182*sqrt(2))*(17-12*sqrt(2))^n)/8.
G.f.: x*(625-3106*x+169*x^2)/((1-x)*(1-34*x+x^2)).

Extensions

G.f. corrected by Klaus Brockhaus, Sep 23 2009

A222393 Nonnegative integers m such that 18*m*(m+1)+1 is a square.

Original entry on oeis.org

0, 4, 12, 152, 424, 5180, 14420, 175984, 489872, 5978292, 16641244, 203085960, 565312440, 6898944364, 19203981732, 234361022432, 652370066464, 7961375818340, 22161378278060, 270452416801144, 752834491387592, 9187420795420572, 25574211328900084
Offset: 1

Views

Author

Bruno Berselli, Feb 19 2013

Keywords

Comments

a(n+2)/a(n) tends to A156164.
a(n) is congruent to {0,2,4} (mod 5, 6 and 10).

Crossrefs

Cf. nonnegative integers n such that k*n*(n+1)+1 is a square: A001652 (k=2), A001921 (k=3), A001477 (k=4), A053606 (k=5), A105038 (k=6), A105040 (k=7), A053141 (k=8), A222390 (k=10), A105838 (k=11), A061278 (k=12), A104240 (k=13); A105063 (k=17), this sequence (k=18), A101180 (k=19), A077259 (k=20) [incomplete list].

Programs

  • Magma
    m:=22; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(4*(1+x)^2/((1-x)*(1-6*x+x^2)*(1+6*x+x^2))));
    
  • Magma
    I:=[0,4,12,152,424]; [n le 5 select I[n] else Self(n-1)+34*Self(n-2)-34*Self(n-3)-Self(n-4)+Self(n-5): n in [1..25]]; // Vincenzo Librandi, Aug 18 2013
    
  • Mathematica
    LinearRecurrence[{1, 34, -34, -1, 1}, {0, 4, 12, 152, 424}, 23]
    CoefficientList[Series[4 x (1 + x)^2 / ((1 - x) (1 - 6 x + x^2) (1 + 6 x + x^2)), {x, 0, 25}], x] (* Vincenzo Librandi, Aug 18 2013 *)
  • Maxima
    makelist(expand(-1/2+((3+sqrt(2)*(-1)^n)*(3-2*sqrt(2))^(2*floor(n/2))+(3-sqrt(2)*(-1)^n)*(3+2*sqrt(2))^(2*floor(n/2)))/12), n, 1, 23);
    
  • PARI
    x='x+O('x^30); concat([0], Vec(4*x*(1+x)^2/((1-x)*(1-6*x+x^2)*(1+6*x+x^2)))) \\ G. C. Greubel, Jul 15 2018

Formula

G.f.: 4*x*(1+x)^2/((1-x)*(1-6*x+x^2)*(1+6*x+x^2)).
a(n) = a(-n+1) = a(n-1)+34*a(n-2)-34*a(n-3)-a(n-4)+a(n-5).
a(n) = -1/2+((3+t*(-1)^n)*(3-2*t)^(2*floor(n/2))+(3-t*(-1)^n)*(3+2*t)^(2*floor(n/2)))/12, where t=sqrt(2).

A383734 Numbers k such that 2+k and 2*k are squares.

Original entry on oeis.org

2, 98, 3362, 114242, 3880898, 131836322, 4478554082, 152139002498, 5168247530882, 175568277047522, 5964153172084898, 202605639573839042, 6882627592338442562, 233806732499933208098, 7942546277405390632802, 269812766699283348307202, 9165691521498228451812098
Offset: 1

Views

Author

Emilio Martín, May 07 2025

Keywords

Comments

The limit of a(n+1)/a(n) is 33.97056... = 17+12*sqrt(2) = (3+2*sqrt(2))^2 (see A156164).

Examples

			98 is a term becouse 98+2=100 is a square and 98*2=196 is a square.
		

Crossrefs

Cf. A382209 (10+k and 10*k are squares).
Cf. A245226 (m such that k+m and k*m are squares).

Programs

  • Mathematica
    LinearRecurrence[{35, -35, 1}, {2, 98, 3362}, 20] (* Amiram Eldar, May 07 2025 *)
  • Python
    from itertools import islice
    def A383734_gen(): # generator of terms
        x, y = 1, 7
        while True:
            yield 2*x**2
            x, y = y, 6*y - x
    A383734_list = list(islice(A383734_gen(), 100))

Formula

a(n) = (1/2) * ((3+2*sqrt(2))^(2*n-1) + (3-2*sqrt(2))^(1-2*n)) - 1.
a(n) = -2*sqrt(2)*sinh(n*log(17+12*sqrt(2))) + 3*cosh(n*log(17+12*sqrt(2))) - 1.
a(n) = 2*A002315(n-1)^2.
a(n) = A075870(n)^2 - 2.
a(n) = 34*a(n-1) - a(n-2) + 32.
G.f.: 2 * (1 + 14*x + x^2) / ((1 - x)*(1 - 34*x + x^2)). - Stefano Spezia, May 08 2025

A280181 Indices of centered 9-gonal numbers (A060544) that are also squares (A000290).

Original entry on oeis.org

1, 17, 561, 19041, 646817, 21972721, 746425681, 25356500417, 861374588481, 29261379507921, 994025528680817, 33767606595639841, 1147104598723073761, 38967788749988868017, 1323757712900898438801, 44968794449880558051201, 1527615253583038075302017
Offset: 1

Views

Author

Colin Barker, Dec 28 2016

Keywords

Comments

Also positive integers y in the solutions to 2*x^2 - 9*y^2 + 9*y - 2 = 0, the corresponding values of x being A046176.
Consider all ordered triples of consecutive integers (k, k+1, k+2) such that k is a square and k+1 is twice a square; then the values of k are the squares of the NSW numbers (A002315), the values of k+1 are twice the squares of the odd Pell numbers (A001653), and the values of k+2 are thrice the terms of this sequence. (See the Example section.) - Jon E. Schoenfield, Sep 06 2019

Examples

			17 is in the sequence because the 17th centered 9-gonal number is 1225, which is also the 35th square.
From _Jon E. Schoenfield_, Sep 06 2019: (Start)
The following table illustrates the relationship between the NSW numbers (A002315), the odd Pell numbers (A001653), and the terms of this sequence:
.
  |  A002315(n-1)^2  |   2*A001653(n)^2  |
n |   = 3*a(n) - 2   |    = 3*a(n) - 1   |       3*a(n)
--+------------------+-------------------+-------------------
1 |    1^2 =       1 |   1^2*2 =       2 |      1*3 =       3
2 |    7^2 =      49 |   5^2*2 =      50 |     17*3 =      51
3 |   41^2 =    1681 |  29^2*2 =    1682 |    561*3 =    1683
4 |  239^2 =   57121 | 169^2*2 =   57122 |  19041*3 =   57123
5 | 1393^2 = 1940449 | 985^2*2 = 1940450 | 646817*3 = 1940451
(End)
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{35, -35, 1}, {1, 17, 561}, 50] (* G. C. Greubel, Dec 28 2016 *)
  • PARI
    Vec(x*(1 - 18*x + x^2) / ((1 - x)*(1 - 34*x + x^2)) + O(x^20))

Formula

a(n) = (6 + (3-2*sqrt(2))*(17+12*sqrt(2))^(-n) + (3+2*sqrt(2))*(17+12*sqrt(2))^n) / 12.
a(n) = 35*a(n-1) - 35*a(n-2) + a(n-3) for n>3.
G.f.: x*(1 - 18*x + x^2) / ((1 - x)*(1 - 34*x + x^2)).
a(n) = (A002315(n-1)^2 + 2)/3 = (2*A001653(n)^2 + 1)/3. - Jon E. Schoenfield, Sep 06 2019
a(n) = A077420(floor((n-1)/2)) * A056771(floor(n/2)). - Jon E. Schoenfield, Sep 08 2019
E.g.f.: -1+(1/12)*(6*exp(x)+(3-2*sqrt(2))*exp((17-12*sqrt(2))*x)+(3+2*sqrt(2))*exp((17+12*sqrt(2))*x)). - Stefano Spezia, Sep 08 2019
Limit_{n->oo} a(n+1)/a(n) = 17 + 12*sqrt(2) = A156164. - Andrea Pinos, Oct 07 2022

A381686 Decimal expansion of the isoperimetric quotient of a truncated cube.

Original entry on oeis.org

6, 1, 3, 0, 2, 8, 2, 1, 1, 0, 7, 9, 2, 8, 0, 3, 2, 1, 1, 0, 2, 4, 0, 5, 5, 8, 1, 4, 4, 7, 1, 4, 0, 7, 9, 7, 0, 8, 9, 7, 6, 1, 6, 9, 2, 2, 3, 9, 3, 3, 1, 6, 9, 9, 2, 7, 7, 8, 9, 4, 8, 9, 0, 5, 8, 5, 7, 3, 9, 4, 5, 9, 1, 5, 0, 4, 0, 5, 8, 4, 7, 3, 7, 6, 9, 2, 7, 7, 8, 3
Offset: 0

Views

Author

Paolo Xausa, Mar 04 2025

Keywords

Comments

For the definition of isoperimetric quotient of a solid, references and links, see A381684.

Examples

			0.61302821107928032110240558144714079708976169223933...
		

Crossrefs

Cf. A377298 (surface area), A377299 (volume).

Programs

  • Mathematica
    First[RealDigits[49*Pi*(17 + 12*Sqrt[2])/(2*(6 + 6*Sqrt[2] + Sqrt[3])^3), 10, 100]]

Formula

Equals 36*Pi*A377299^2/(A377298^3).
Equals 49*Pi*(17 + 12*sqrt(2))/(2*(6 + 6*sqrt(2) + sqrt(3))^3) = 49*A000796*A156164/(2*(6 + A010524 + A002194)^3).
Previous Showing 11-17 of 17 results.