A024196
a(n) = 2nd elementary symmetric function of the first n+1 odd positive integers.
Original entry on oeis.org
3, 23, 86, 230, 505, 973, 1708, 2796, 4335, 6435, 9218, 12818, 17381, 23065, 30040, 38488, 48603, 60591, 74670, 91070, 110033, 131813, 156676, 184900, 216775, 252603, 292698, 337386, 387005, 441905, 502448, 569008, 641971, 721735, 808710, 903318
Offset: 1
a(8) = 8*80+7*79+6*78+5*77+4*76+3*75+2*74+1*73 = 2796. - _Bruno Berselli_, Mar 13 2012
- Bruno Berselli, Table of n, a(n) for n = 1..1000
- Wolfdieter Lang, On Generating functions of Diagonals Sequences of Sheffer and Riordan Number Triangles, arXiv:1708.01421 [math.NT], August 2017.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Equals third right hand column of
A028338 triangle.
Equals third left hand column of
A109692 triangle.
Equals third right hand column of
A161198 triangle divided by 2^m.
(End)
-
List([1..36], n -> n*(n+1)*(3*n^2+5*n+1)/6); # Muniru A Asiru, Feb 13 2018
-
seq(n*(n+1)*(3*n^2+5*n+1)/6,n=1..25); # Muniru A Asiru, Feb 13 2018
-
f[k_] := 2 k - 1; t[n_] := Table[f[k], {k, 1, n}]
a[n_] := SymmetricPolynomial[2, t[n]]
Table[a[n], {n, 2, 50}] (* A024196 *)
(* Clark Kimberling, Dec 31 2011 *)
Table[(n(n+1)(3n^2+5n+1))/6,{n,50}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{3,23,86,230,505},50] (* Harvey P. Dale, Jul 08 2019 *)
A074599
Numerator of 2 * H(n,2,1), a generalized harmonic number. See A075135. Also 2 * A350669.
Original entry on oeis.org
2, 8, 46, 352, 1126, 13016, 176138, 182144, 3186538, 62075752, 63461422, 1488711776, 7577414602, 23104065256, 680057071574, 21372905414144, 21646396991594, 21904260478904, 819482859775298, 828045249930848
Offset: 1
-
Table[ Numerator[ Sum[1/i, {i, 1/2, n}]], {n, 1, 20}]
A109692
Triangle of coefficients in expansion of (1+x)*(1+3x)*(1+5x)*(1+7x)*...*(1+(2n-1)x).
Original entry on oeis.org
1, 1, 1, 1, 4, 3, 1, 9, 23, 15, 1, 16, 86, 176, 105, 1, 25, 230, 950, 1689, 945, 1, 36, 505, 3480, 12139, 19524, 10395, 1, 49, 973, 10045, 57379, 177331, 264207, 135135, 1, 64, 1708, 24640, 208054, 1038016, 2924172, 4098240, 2027025
Offset: 0
Triangle T(n,k) begins:
1;
1, 1;
1, 4, 3;
1, 9, 23, 15;
1, 16, 86, 176, 105;
1, 25, 230, 950, 1689, 945;
1, 36, 505, 3480, 12139, 19524, 10395;
...
Cf.
A161198 (transposed scaled triangle version).
-
nmax:=8; mmax:=nmax: for n from 0 to nmax do a(n, n) := doublefactorial(2*n-1) od: for n from 0 to nmax do a(n, 0):=1 od: for n from 2 to nmax do for m from 1 to n-1 do a(n, m) := a(n-1,m) + (2*n-1)*a(n-1,m-1) od; od: seq(seq(a(n, m), m=0..n), n=0..nmax); # Johannes W. Meijer, Jun 08 2009, revised Nov 25 2012
A161199
Numerators in expansion of (1-x)^(-5/2).
Original entry on oeis.org
1, 5, 35, 105, 1155, 3003, 15015, 36465, 692835, 1616615, 7436429, 16900975, 152108775, 339319575, 1502700975, 3305942145, 115707975075, 251835004575, 1091285019825, 2354878200675, 20251952525805, 43397041126725, 185423721177825, 395033145117975
Offset: 0
Cf.
A161198 (triangle for (1-x)^((-1-2*n)/2) for all values of n).
Cf.
A046161 (denominators for (1-x)^(-5/2)).
-
A161199:= func< n | Numerator( Binomial(n+3,3)*Catalan(n+2)/2^(2*n+1) ) >;
[A161199(n): n in [0..30]]; // G. C. Greubel, Sep 24 2024
-
Numerator[CoefficientList[Series[(1-x)^(-5/2),{x,0,30}],x]] (* or *) Numerator[Table[(4n^2+8n+3)/3 Binomial[2n,n]/4^n,{n,0,30}]] (* Harvey P. Dale, Oct 15 2011 *)
-
def A161199(n): return numerator((-1)^n*binomial(-5/2,n))
[A161199(n) for n in range(31)] # G. C. Greubel, Sep 24 2024
A161202
Numerators in expansion of (1-x)^(5/2).
Original entry on oeis.org
1, -5, 15, -5, -5, -3, -5, -5, -45, -55, -143, -195, -1105, -1615, -4845, -7429, -185725, -294975, -950475, -1550775, -10235115, -17058525, -57378675, -97294275, -1329688425, -2287064091, -7916760315, -13781027215
Offset: 0
Cf.
A161198 (triangle of coefficients of (1-x)^((-1-2*n)/2)).
-
A161202:= func< n | -Numerator(15*(n+1)*Catalan(n)/(4^n*(2*n-1)*(2*n-3)*(2*n-5))) >;
[A161202(n): n in [0..30]]; // G. C. Greubel, Sep 24 2024
-
Numerator[CoefficientList[Series[(1-x)^(5/2),{x,0,30}],x]] (* Harvey P. Dale, Aug 22 2011 *)
Table[(-1)^n*Numerator[Binomial[5/2, n]], {n,0,30}] (* G. C. Greubel, Sep 24 2024 *)
-
def A161202(n): return (-1)^n*numerator(binomial(5/2,n))
[A161202(n) for n in range(31)] # G. C. Greubel, Sep 24 2024
A161201
Numerators in expansion of (1-x)^(-7/2).
Original entry on oeis.org
1, 7, 63, 231, 3003, 9009, 51051, 138567, 2909907, 7436429, 37182145, 91265265, 882230895, 2103781365, 9917826435, 23141595015, 856239015555, 1964313035685, 8948537162565, 20251952525805, 182267572732245
Offset: 0
Cf.
A161198 (triangle of coefficients of (1-x)^((-1-2*n)/2)).
-
A161201:= func< n | Numerator((n+1)*(2*n+1)*(2*n+3)*(2*n+5)*Catalan(n)/(15*4^n)) >;
[A161201(n): n in [0..30]]; // G. C. Greubel, Sep 24 2024
-
CoefficientList[Series[(1-x)^(-7/2),{x,0,20}],x]//Numerator (* Harvey P. Dale, Jan 14 2020 *)
Table[(-1)^n*Numerator[Binomial[-7/2, n]], {n, 0, 30}] (* G. C. Greubel, Sep 24 2024 *)
-
def A161201(n): return (-1)^n*numerator(binomial(-7/2,n))
[A161201(n) for n in range(31)] # G. C. Greubel, Sep 24 2024
A028340
Coefficient of x^3 in expansion of (x+1)*(x+3)*...*(x+2*n-1).
Original entry on oeis.org
1, 16, 230, 3480, 57379, 1038016, 20570444, 444647600, 10431670821, 264300628944, 7198061846898, 209814739262856, 6520139954328519, 215245451727154944, 7524314127912551832, 277705505168550027360, 10792700030471840300745, 440604294676004639627280
Offset: 3
-
Table[Coefficient[Product[x + 2*k - 1, {k, 1, n}], x, 3], {n,3,50}] (* G. C. Greubel, Nov 24 2016 *)
-
a(n) = polcoeff(prod(k=1, n, x+2*k-1), 3); \\ Michel Marcus, Nov 12 2014
A028339
Coefficient of x^2 in expansion of (x+1)*(x+3)*...*(x+2*n-1).
Original entry on oeis.org
1, 9, 86, 950, 12139, 177331, 2924172, 53809164, 1094071221, 24372200061, 590546123298, 15467069396610, 435512515705695, 13121113142970855, 421214220916438680, 14354510691610713240, 517596339235489288425, 19688993487602867898225, 787995759739909824183150
Offset: 2
G.f. = x^2 + 9*x^3 + 86*x^4 + 950*x^5 + 12139*x^6 + 177331*x^7 + ...
-
Table[Coefficient[Product[x + 2*k - 1, {k, 1, n}], x, 2], {n,2,50}] (* G. C. Greubel, Nov 24 2016 *)
-
a(n) = polcoeff(prod(k=1, n, x+2*k-1), 2); \\ Michel Marcus, Nov 12 2014
A028341
Coefficient of x^4 in expansion of (x+1)*(x+3)*...*(x+2*n-1).
Original entry on oeis.org
1, 25, 505, 10045, 208054, 4574934, 107494190, 2702025590, 72578259391, 2078757113719, 63324503917311, 2046225352864875, 69953125893139644, 2523698606200763196, 95853765344939263692, 3824294822931302783964, 159940198124792648875341, 6998152417792503243516261
Offset: 4
G.f. = x^4 + 25*x^5 + 505*x^6 + 10045*x^7 + 208054*x^8 + 4574934*x^9 + ...
-
N:= 50: # to get a(4) to a(N)
P[0]:= 1;
for n from 1 to N do
P[n]:= rem(P[n-1]*(x + 2*n-1), x^5,x)
od:
seq(coeff(P[n],x,4),n=4..N); # Robert Israel, Nov 13 2014
-
Table[Coefficient[Product[x + 2*k - 1, {k, 1, n}], x, 4], {n,4,50}] (* G. C. Greubel, Nov 24 2016 *)
-
a(n) = polcoeff(prod(k=1, n, x+2*k-1), 4); \\ Michel Marcus, Nov 12 2014
A024198
4th elementary symmetric function of the first n+3 odd positive integers.
Original entry on oeis.org
105, 1689, 12139, 57379, 208054, 626934, 1646778, 3889578, 8439783, 17085783, 32645613, 59394517, 103613692, 174281212, 283927812, 449681892, 694529781, 1048818981, 1552033791, 2254874391, 3221672146, 4533175570, 6289743070
Offset: 1
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
- Wolfdieter Lang, On Generating functions of Diagonals Sequences of Sheffer and Riordan Number Triangles, arXiv:1708.01421 [math.NT], August 2017.
Equals fifth right hand column of
A028338 triangle.
Equals fifth left hand column of
A109692 triangle.
Equals fifth right hand column of
A161198 triangle divided by 2^m.
(End)
-
LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{105,1689,12139,57379,208054,626934,1646778,3889578,8439783},30] (* Harvey P. Dale, May 28 2018 *)
-
Vec(-x*(x^4+112*x^3+718*x^2+744*x+105)/(x-1)^9 + O(x^100)) \\ Colin Barker, Aug 15 2014
Comments