cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A024196 a(n) = 2nd elementary symmetric function of the first n+1 odd positive integers.

Original entry on oeis.org

3, 23, 86, 230, 505, 973, 1708, 2796, 4335, 6435, 9218, 12818, 17381, 23065, 30040, 38488, 48603, 60591, 74670, 91070, 110033, 131813, 156676, 184900, 216775, 252603, 292698, 337386, 387005, 441905, 502448, 569008, 641971, 721735, 808710, 903318
Offset: 1

Views

Author

Keywords

Examples

			a(8) = 8*80+7*79+6*78+5*77+4*76+3*75+2*74+1*73 = 2796. - _Bruno Berselli_, Mar 13 2012
		

Crossrefs

From Johannes W. Meijer, Jun 08 2009: (Start)
Equals third right hand column of A028338 triangle.
Equals third left hand column of A109692 triangle.
Equals third right hand column of A161198 triangle divided by 2^m.
(End)
Cf. A016061.

Programs

  • GAP
    List([1..36], n -> n*(n+1)*(3*n^2+5*n+1)/6); # Muniru A Asiru, Feb 13 2018
  • Maple
    seq(n*(n+1)*(3*n^2+5*n+1)/6,n=1..25); # Muniru A Asiru, Feb 13 2018
  • Mathematica
    f[k_] := 2 k - 1; t[n_] := Table[f[k], {k, 1, n}]
    a[n_] := SymmetricPolynomial[2, t[n]]
    Table[a[n], {n, 2, 50}]  (* A024196 *)
    (* Clark Kimberling, Dec 31 2011 *)
    Table[(n(n+1)(3n^2+5n+1))/6,{n,50}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{3,23,86,230,505},50] (* Harvey P. Dale, Jul 08 2019 *)

Formula

a(n) = n*(n+1)*(3*n^2+5*n+1)/6.
From Bruno Berselli, Mar 13 2012: (Start)
G.f.: x*(3 + 8*x + x^2)/(1 - x)^5.
a(n) = Sum_{i=1..n} (n+1-i)*((n+1)^2-i).
a(n) = n*A016061(n) - Sum_{i=0..n-1} A016061(i). (End)
a(n) - a(n-1) = A099721(n). Partial sums of A099721.- Philippe Deléham, May 07 2012
a(n) = Sum_{i=1..n} ((2*i-1)*Sum_{j=i..n} (2*j+1)) = 1*(3+5+...2*n+1) + 3*(5+7+...+2*n+1) + ... + (2*n-1)*(2*n+1). - J. M. Bergot, Apr 21 2017
a(n) = A028338(n+1, n-1), n >= 1, (third diagonal). See the crossref. below. Wolfdieter Lang, Jul 21 2017
a(n) = (A000583(n+1) - A000447(n+1))/2. - J. M. Bergot, Feb 13 2018

A074599 Numerator of 2 * H(n,2,1), a generalized harmonic number. See A075135. Also 2 * A350669.

Original entry on oeis.org

2, 8, 46, 352, 1126, 13016, 176138, 182144, 3186538, 62075752, 63461422, 1488711776, 7577414602, 23104065256, 680057071574, 21372905414144, 21646396991594, 21904260478904, 819482859775298, 828045249930848
Offset: 1

Views

Author

Robert G. Wilson v, Aug 27 2002

Keywords

Comments

2*(1 + 1/3 + ... + 1/(2*n-1))/Pi = a(n)/(A350670(n)*Pi) is the equivalent resistance between the points (0,0) and (n,n) on a 2-dimension infinite square grid of unit resistors. - Jianing Song, Apr 28 2025

Crossrefs

Cf. A350669. The denominators are in A350670.
Not always equal to the second left hand column of A161198 triangle divided by A025549. - Johannes W. Meijer, Jun 08 2009

Programs

  • Mathematica
    Table[ Numerator[ Sum[1/i, {i, 1/2, n}]], {n, 1, 20}]

A109692 Triangle of coefficients in expansion of (1+x)*(1+3x)*(1+5x)*(1+7x)*...*(1+(2n-1)x).

Original entry on oeis.org

1, 1, 1, 1, 4, 3, 1, 9, 23, 15, 1, 16, 86, 176, 105, 1, 25, 230, 950, 1689, 945, 1, 36, 505, 3480, 12139, 19524, 10395, 1, 49, 973, 10045, 57379, 177331, 264207, 135135, 1, 64, 1708, 24640, 208054, 1038016, 2924172, 4098240, 2027025
Offset: 0

Views

Author

Philippe Deléham, Aug 08 2005

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, read by rows, given by [1, 0, 1, 0, 1, 0, 1, 0, 1, ...] DELTA [1, 2, 3, 4, 5, 6, 7, 8, 9, ...] where DELTA is the operator defined in A084938.
T(n,k), 0 <= k <= n, is the number of elements in the Coxeter group B_n with absolute length k. - Jose Bastidas, Jul 14 2023

Examples

			Triangle T(n,k) begins:
  1;
  1,  1;
  1,  4,   3;
  1,  9,  23,   15;
  1, 16,  86,  176,   105;
  1, 25, 230,  950,  1689,   945;
  1, 36, 505, 3480, 12139, 19524, 10395;
  ...
		

Crossrefs

Cf. A039758 (signed version). A028338 transposed.
Row sums: A000165.
Central terms: A293318.
Cf. A161198 (transposed scaled triangle version).

Programs

  • Maple
    nmax:=8; mmax:=nmax: for n from 0 to nmax do a(n, n) := doublefactorial(2*n-1) od: for n from 0 to nmax do a(n, 0):=1 od: for n from 2 to nmax do for m from 1 to n-1 do a(n, m) := a(n-1,m) + (2*n-1)*a(n-1,m-1) od; od: seq(seq(a(n, m), m=0..n), n=0..nmax); # Johannes W. Meijer, Jun 08 2009, revised Nov 25 2012

Formula

T(n,m) = T(n-1,m) + (2*n-1)*T(n-1,m-1) with T(n,n) = (2*n-1)!! and T(n,0) = 1. - Johannes W. Meijer, Jun 08 2009

A161199 Numerators in expansion of (1-x)^(-5/2).

Original entry on oeis.org

1, 5, 35, 105, 1155, 3003, 15015, 36465, 692835, 1616615, 7436429, 16900975, 152108775, 339319575, 1502700975, 3305942145, 115707975075, 251835004575, 1091285019825, 2354878200675, 20251952525805, 43397041126725, 185423721177825, 395033145117975
Offset: 0

Views

Author

Johannes W. Meijer, Jun 08 2009

Keywords

Crossrefs

Cf. A161198 (triangle for (1-x)^((-1-2*n)/2) for all values of n).
Cf. A046161 (denominators for (1-x)^(-5/2)).
Numerators of [x^n]( (1-x)^(p/2) ): A161202 (p=5), A161200 (p=3), A002596 (p=1), A001790 (p=-1), A001803 (p=-3), this sequence (p=-5), A161201 (p=-7).

Programs

  • Magma
    A161199:= func< n | Numerator( Binomial(n+3,3)*Catalan(n+2)/2^(2*n+1) ) >;
    [A161199(n): n in [0..30]]; // G. C. Greubel, Sep 24 2024
    
  • Mathematica
    Numerator[CoefficientList[Series[(1-x)^(-5/2),{x,0,30}],x]] (* or *) Numerator[Table[(4n^2+8n+3)/3 Binomial[2n,n]/4^n,{n,0,30}]] (* Harvey P. Dale, Oct 15 2011 *)
  • SageMath
    def A161199(n): return numerator((-1)^n*binomial(-5/2,n))
    [A161199(n) for n in range(31)] # G. C. Greubel, Sep 24 2024

Formula

a(n) = numerator(((3 + 8*n + 4*n^2)/3)*binomial(2*n,n)/(4^n)).
a(n) = denominator((3/2)*Integral_{x=0..1} x^n*sqrt(1-x) dx), where the integral is sqrt(Pi)*n!/Gamma(n+5/2) = n!/( (n+3/2)*(n+1/2)*(n-1/2)*...*(1/2)). - Groux Roland, Feb 23 2011

A161202 Numerators in expansion of (1-x)^(5/2).

Original entry on oeis.org

1, -5, 15, -5, -5, -3, -5, -5, -45, -55, -143, -195, -1105, -1615, -4845, -7429, -185725, -294975, -950475, -1550775, -10235115, -17058525, -57378675, -97294275, -1329688425, -2287064091, -7916760315, -13781027215
Offset: 0

Views

Author

Johannes W. Meijer, Jun 08 2009

Keywords

Crossrefs

Cf. A046161 (denominators).
Cf. A161198 (triangle of coefficients of (1-x)^((-1-2*n)/2)).
Numerators of [x^n]( (1-x)^(p/2) ): this sequence (p=5), A161200 (p=3), A002596 (p=1), A001790 (p=-1), A001803 (p=-3), A161199 (p=-5), A161201 (p=-7).

Programs

  • Magma
    A161202:= func< n | -Numerator(15*(n+1)*Catalan(n)/(4^n*(2*n-1)*(2*n-3)*(2*n-5))) >;
    [A161202(n): n in [0..30]]; // G. C. Greubel, Sep 24 2024
    
  • Mathematica
    Numerator[CoefficientList[Series[(1-x)^(5/2),{x,0,30}],x]] (* Harvey P. Dale, Aug 22 2011 *)
    Table[(-1)^n*Numerator[Binomial[5/2, n]], {n,0,30}] (* G. C. Greubel, Sep 24 2024 *)
  • SageMath
    def A161202(n): return (-1)^n*numerator(binomial(5/2,n))
    [A161202(n) for n in range(31)] # G. C. Greubel, Sep 24 2024

Formula

a(n) = numerator( (15/(15-46*n+36*n^2-8*n^3))*binomial(2*n,n)/(4^n) ).
a(n) = (-1)^n*numerator( binomial(5/2, n) ). - G. C. Greubel, Sep 24 2024

A161201 Numerators in expansion of (1-x)^(-7/2).

Original entry on oeis.org

1, 7, 63, 231, 3003, 9009, 51051, 138567, 2909907, 7436429, 37182145, 91265265, 882230895, 2103781365, 9917826435, 23141595015, 856239015555, 1964313035685, 8948537162565, 20251952525805, 182267572732245
Offset: 0

Views

Author

Johannes W. Meijer, Jun 08 2009

Keywords

Crossrefs

Cf. A046161 (denominators).
Cf. A161198 (triangle of coefficients of (1-x)^((-1-2*n)/2)).
Numerators of [x^n]( (1-x)^(p/2) ): A161202 (p=5), A161200 (p=3), A002596 (p=1), A001790 (p=-1), A001803 (p=-3), A161199 (p=-5), this sequence (p=-7).

Programs

  • Magma
    A161201:= func< n | Numerator((n+1)*(2*n+1)*(2*n+3)*(2*n+5)*Catalan(n)/(15*4^n)) >;
    [A161201(n): n in [0..30]]; // G. C. Greubel, Sep 24 2024
    
  • Mathematica
    CoefficientList[Series[(1-x)^(-7/2),{x,0,20}],x]//Numerator (* Harvey P. Dale, Jan 14 2020 *)
    Table[(-1)^n*Numerator[Binomial[-7/2, n]], {n, 0, 30}] (* G. C. Greubel, Sep 24 2024 *)
  • SageMath
    def A161201(n): return (-1)^n*numerator(binomial(-7/2,n))
    [A161201(n) for n in range(31)] # G. C. Greubel, Sep 24 2024

Formula

a(n) = numerator(((15+46*n+36*n^2+8*n^3)/15)*binomial(2*n,n)/(4^n)).
a(n) = (-1)^n*numerator( binomial(-7/2, n) ). - G. C. Greubel, Sep 24 2024

A028340 Coefficient of x^3 in expansion of (x+1)*(x+3)*...*(x+2*n-1).

Original entry on oeis.org

1, 16, 230, 3480, 57379, 1038016, 20570444, 444647600, 10431670821, 264300628944, 7198061846898, 209814739262856, 6520139954328519, 215245451727154944, 7524314127912551832, 277705505168550027360, 10792700030471840300745, 440604294676004639627280
Offset: 3

Views

Author

Keywords

Comments

Equals fourth left hand column of A161198 triangle divided by 8. - Johannes W. Meijer, Jun 08 2009

Crossrefs

Programs

  • Mathematica
    Table[Coefficient[Product[x + 2*k - 1, {k, 1, n}], x, 3], {n,3,50}] (* G. C. Greubel, Nov 24 2016 *)
  • PARI
    a(n) = polcoeff(prod(k=1, n, x+2*k-1), 3); \\ Michel Marcus, Nov 12 2014

Formula

a(n) = Sum_{i=k+1..n} (-1)^(k+1-i)*2^(n-1)*binomial(i-1, k)*s1(n, i) with k = 3, where s1(n, i) are unsigned Stirling numbers of the first kind. - Victor Adamchik (adamchik(AT)ux10.sp.cs.cmu.edu), Jan 23 2001
E.g.f.: -(log(1-2*x))^3/( 48*sqrt(1-2*x) ). - Vladeta Jovovic, Feb 19 2003

Extensions

More terms from Michel Marcus, Nov 12 2014

A028339 Coefficient of x^2 in expansion of (x+1)*(x+3)*...*(x+2*n-1).

Original entry on oeis.org

1, 9, 86, 950, 12139, 177331, 2924172, 53809164, 1094071221, 24372200061, 590546123298, 15467069396610, 435512515705695, 13121113142970855, 421214220916438680, 14354510691610713240, 517596339235489288425, 19688993487602867898225, 787995759739909824183150
Offset: 2

Views

Author

Keywords

Comments

Equals third left hand column of A161198 triangle divided by 4. - Johannes W. Meijer, Jun 08 2009

Examples

			G.f. = x^2 + 9*x^3 + 86*x^4 + 950*x^5 + 12139*x^6 + 177331*x^7 + ...
		

Crossrefs

Programs

  • Mathematica
    Table[Coefficient[Product[x + 2*k - 1, {k, 1, n}], x, 2], {n,2,50}] (* G. C. Greubel, Nov 24 2016 *)
  • PARI
    a(n) = polcoeff(prod(k=1, n, x+2*k-1), 2); \\ Michel Marcus, Nov 12 2014

Formula

a(n) = Sum_{i=k+1,..,n}[ (-1)^(k+1-i) 2^(n-1) binomial(i-1, k) s1(n, i) ] with k = 2, where s1(n, i) are unsigned Stirling numbers of the first kind. - Victor Adamchik (adamchik(AT)ux10.sp.cs.cmu.edu), Jan 23 2001
E.g.f.: (log(1-2*x))^2/(8*sqrt(1-2*x)). - Vladeta Jovovic, Feb 19 2003
a(n) ~ n! * log(n)^2 * 2^(n-3) / sqrt(Pi*n) * (1 + (2*gamma + 4*log(2))/log(n)), where gamma is the Euler-Mascheroni constant (A001620). - Vaclav Kotesovec, Oct 18 2017

Extensions

More terms from Michel Marcus, Nov 12 2014

A028341 Coefficient of x^4 in expansion of (x+1)*(x+3)*...*(x+2*n-1).

Original entry on oeis.org

1, 25, 505, 10045, 208054, 4574934, 107494190, 2702025590, 72578259391, 2078757113719, 63324503917311, 2046225352864875, 69953125893139644, 2523698606200763196, 95853765344939263692, 3824294822931302783964, 159940198124792648875341, 6998152417792503243516261
Offset: 4

Views

Author

Keywords

Comments

Equals fifth left hand column of A161198 triangle divided by 16. - Johannes W. Meijer, Jun 08 2009

Examples

			G.f. = x^4 + 25*x^5 + 505*x^6 + 10045*x^7 + 208054*x^8 + 4574934*x^9 + ...
		

Crossrefs

Programs

  • Maple
    N:= 50: # to get a(4) to a(N)
    P[0]:= 1;
    for n from 1 to N do
      P[n]:= rem(P[n-1]*(x + 2*n-1), x^5,x)
    od:
    seq(coeff(P[n],x,4),n=4..N); # Robert Israel, Nov 13 2014
  • Mathematica
    Table[Coefficient[Product[x + 2*k - 1, {k, 1, n}], x, 4], {n,4,50}] (* G. C. Greubel, Nov 24 2016 *)
  • PARI
    a(n) = polcoeff(prod(k=1, n, x+2*k-1), 4); \\ Michel Marcus, Nov 12 2014

Formula

a(n) = Sum_{i=k+1,..,n} (-1)^(k+1-i)*2^(n-1)*binomial(i-1, k)*s1(n, i) with k = 4, where s1(n, i) are unsigned Stirling numbers of the first kind. - Victor Adamchik (adamchik(AT)ux10.sp.cs.cmu.edu), Jan 23 2001
E.g.f.: (log(1-2*x))^4/( 384*sqrt(1-2*x) ). - Vladeta Jovovic, Feb 19 2003

Extensions

More terms from Michel Marcus, Nov 12 2014

A024198 4th elementary symmetric function of the first n+3 odd positive integers.

Original entry on oeis.org

105, 1689, 12139, 57379, 208054, 626934, 1646778, 3889578, 8439783, 17085783, 32645613, 59394517, 103613692, 174281212, 283927812, 449681892, 694529781, 1048818981, 1552033791, 2254874391, 3221672146, 4533175570, 6289743070
Offset: 1

Views

Author

Keywords

Crossrefs

From Johannes W. Meijer, Jun 08 2009: (Start)
Equals fifth right hand column of A028338 triangle.
Equals fifth left hand column of A109692 triangle.
Equals fifth right hand column of A161198 triangle divided by 2^m.
(End)

Programs

  • Mathematica
    LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{105,1689,12139,57379,208054,626934,1646778,3889578,8439783},30] (* Harvey P. Dale, May 28 2018 *)
  • PARI
    Vec(-x*(x^4+112*x^3+718*x^2+744*x+105)/(x-1)^9 + O(x^100)) \\ Colin Barker, Aug 15 2014

Formula

a(n) = n*(n+1)*(n+2)*(n+3)*(15*n^4+150*n^3+515*n^2+672*n+223)/360.
G.f.: -x*(x^4+112*x^3+718*x^2+744*x+105) / (x-1)^9. - Colin Barker, Aug 15 2014
a(n) = A000332(n+3) * (15*n^4+150*n^3+515*n^2+672*n+223)/15 . - R. J. Mathar, Oct 01 2016
a(n) = A(n+4, n-1), n >= 1 (fifth diagonal). See a crossref. below. - Wolfdieter Lang, Jul 21 2017
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9). - Wesley Ivan Hurt, Jul 09 2025
Previous Showing 11-20 of 23 results. Next