cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 77 results. Next

A319238 Positions of zeros in A114592, the list of coefficients in the expansion of Product_{n > 1} (1 - 1/n^s).

Original entry on oeis.org

6, 8, 10, 14, 15, 16, 21, 22, 26, 27, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62, 64, 65, 69, 74, 77, 81, 82, 85, 86, 87, 91, 93, 94, 95, 96, 106, 111, 115, 118, 119, 120, 122, 123, 125, 129, 133, 134, 141, 142, 143, 144, 145, 146, 155, 158, 159, 160, 161, 166
Offset: 1

Views

Author

Gus Wiseman, Sep 15 2018

Keywords

Comments

From Tian Vlasic, Jan 01 2022: (Start)
Numbers that have an equal number of even- and odd-length unordered factorizations into distinct factors.
For prime p, by the pentagonal number theorem, p^k is a term if and only if k is in A090864.
For primes p and q, p*q^k is a term if and only if k = A000326(m)+N with 0 <= N < m. (End)

Examples

			16 = 2*8 = 4*4 = 2*2*4 = 2*2*2*2 has an equal number of even-length factorizations and odd-length factorizations into distinct factors (1). - _Tian Vlasic_, Dec 31 2021
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Join@@Position[Table[Sum[(-1)^Length[f],{f,Select[facs[n],UnsameQ@@#&]}],{n,100}],0]

A319786 Number of factorizations of n where no two factors are relatively prime.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 4, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 2, 2, 1, 1, 7, 2, 2, 1, 2, 1, 4, 1, 4, 1, 1, 1, 3, 1, 1, 2, 11, 1, 1, 1, 2, 1, 1, 1, 7, 1, 1, 2, 2, 1, 1, 1, 7, 5, 1, 1, 3, 1, 1, 1, 4, 1, 3, 1, 2, 1, 1, 1, 12, 1, 2, 2, 4, 1, 1, 1, 4, 1
Offset: 1

Views

Author

Gus Wiseman, Sep 27 2018

Keywords

Comments

First differs from A305193 at a(36) = 4, A305193(36) = 5.
a(n) depends only on prime signature of n (cf. A025487). - Antti Karttunen, Nov 07 2018

Examples

			The a(48) = 7 factorizations are (2*2*2*6), (2*2*12), (2*4*6), (2*24), (4*12), (6*8), (48).
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],!Or@@CoprimeQ@@@Subsets[#,{2}]&]],{n,100}]
  • PARI
    A319786(n, m=n, facs=List([])) = if(1==n, (1!=gcd(Vec(facs))), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A319786(n/d, d, newfacs))); (s)); \\ Antti Karttunen, Nov 07 2018

Extensions

More terms from Antti Karttunen, Nov 07 2018

A066637 Total number of elements in all factorizations of n with all factors > 1.

Original entry on oeis.org

0, 1, 1, 3, 1, 3, 1, 6, 3, 3, 1, 8, 1, 3, 3, 12, 1, 8, 1, 8, 3, 3, 1, 17, 3, 3, 6, 8, 1, 10, 1, 20, 3, 3, 3, 22, 1, 3, 3, 17, 1, 10, 1, 8, 8, 3, 1, 34, 3, 8, 3, 8, 1, 17, 3, 17, 3, 3, 1, 27, 1, 3, 8, 35, 3, 10, 1, 8, 3, 10, 1, 46, 1, 3, 8, 8, 3, 10, 1, 34, 12, 3, 1, 27, 3, 3, 3, 17, 1, 27, 3, 8, 3, 3, 3
Offset: 1

Views

Author

Amarnath Murthy, Dec 28 2001

Keywords

Comments

From Gus Wiseman, Apr 18 2021: (Start)
Number of ways to choose a factor index or position in a factorization of n. The version selecting a factor value is A339564. For example, the factorizations of n = 2, 4, 8, 12, 16, 24, 30 with a selected position (in parentheses) are:
((2)) ((4)) ((8)) ((12)) ((16)) ((24)) ((30))
((2)*2) ((2)*4) ((2)*6) ((2)*8) ((3)*8) ((5)*6)
(2*(2)) (2*(4)) (2*(6)) (2*(8)) (3*(8)) (5*(6))
((2)*2*2) ((3)*4) ((4)*4) ((4)*6) ((2)*15)
(2*(2)*2) (3*(4)) (4*(4)) (4*(6)) (2*(15))
(2*2*(2)) ((2)*2*3) ((2)*2*4) ((2)*12) ((3)*10)
(2*(2)*3) (2*(2)*4) (2*(12)) (3*(10))
(2*2*(3)) (2*2*(4)) ((2)*2*6) ((2)*3*5)
((2)*2*2*2) (2*(2)*6) (2*(3)*5)
(2*(2)*2*2) (2*2*(6)) (2*3*(5))
(2*2*(2)*2) ((2)*3*4)
(2*2*2*(2)) (2*(3)*4)
(2*3*(4))
((2)*2*2*3)
(2*(2)*2*3)
(2*2*(2)*3)
(2*2*2*(3))
(End)

Examples

			a(12) = 8: there are 4 factorizations of 12: (12), (6*2), (4*3), (3*2*2) having 1, 2, 2, 3 elements respectively, a total of 8.
		

References

  • Amarnath Murthy, Generalization of Partition function, Introducing Smarandache Factor partitions, Smarandache Notions Journal, Vol. 11, 1-2-3, Spring 2000.
  • Amarnath Murthy, Length and extent of Smarandache Factor partitions, Smarandache Notions Journal, Vol. 11, 1-2-3, Spring 2000.

Crossrefs

The version for normal multisets is A001787.
The version for compositions is A001792.
The version for partitions is A006128 (strict: A015723).
Choosing a value instead of position gives A339564.
A000070 counts partitions with a selected part.
A001055 counts factorizations.
A002033 and A074206 count ordered factorizations.
A067824 counts strict chains of divisors starting with n.
A336875 counts compositions with a selected part.

Programs

  • Maple
    # Return a list of lists which are factorizations (product representations)
    # of n. Within each sublist, the factors are sorted. A minimum factor in
    # each element of sublists returned can be specified with 'mincomp'.
    # If mincomp=2, the number of sublists contained in the list returned is A001055(n).
    # Example:
    # n=8 and mincomp=2 return [[2,2,2],[4,8],[8]]
    listProdRep := proc(n,mincomp)
        local dvs,resul,f,i,j,rli,tmp ;
        resul := [] ;
        # list returned is empty if n < mincomp
        if n >= mincomp then
            if n = 1 then
                RETURN([1]) ;
            else
                # compute the divisors, and take each divisor
                # as a head element (minimum element) of one of the
                # sublists. Example: for n=8 use {1,2,4,8}, and consider
                # (for mincomp=2) sublists [2,...], [4,...] and [8].
                dvs := numtheory[divisors](n) ;
                for i from 1 to nops(dvs) do
                    # select the head element 'f' from the divisors
                    f := op(i,dvs) ;
                    # if this is already the maximum divisor n
                    # itself, this head element is the last in
                    # the sublist
                    if f =n and f >= mincomp then
                        resul := [op(resul),[f]] ;
                    elif f >= mincomp then
                        # if this is not the maximum element
                        # n itself, produce all factorizations
                        # of the remaining factor recursively.
                        rli := procname(n/f,f) ;
                        # Prepend all the results produced
                        # from the recursion with the head
                        # element for the result.
                        for j from 1 to nops(rli) do
                            tmp := [f,op(op(j,rli))] ;
                            resul := [op(resul),tmp] ;
                        od ;
                    fi ;
                od ;
            fi ;
        fi ;
        resul ;
    end:
    A066637 := proc(n)
        local f,d;
        a := 0 ;
        for d in listProdRep(n,2) do
            a := a+nops(d) ;
        end do:
        a ;
    end proc: # R. J. Mathar, Jul 11 2013
    # second Maple program:
    with(numtheory):
    b:= proc(n, k) option remember; `if`(n>k, 0, [1$2])+
          `if`(isprime(n), 0, (p-> p+[0, p[1]])(add(
          `if`(d>k, 0, b(n/d, d)), d=divisors(n) minus {1, n})))
        end:
    a:= n-> `if`(n<2, 0, b(n$2)[2]):
    seq(a(n), n=1..120); # Alois P. Heinz, Feb 12 2019
  • Mathematica
    g[1, r_] := g[1, r]={1, 0}; g[n_, r_] := g[n, r]=Module[{ds, i, val}, ds=Select[Divisors[n], 1<#<=r&]; val={0, 0}+Sum[g[n/ds[[i]], ds[[i]]], {i, 1, Length[ds]}]; val+{0, val[[1]]}]; a[n_] := g[n, n][[2]]; a/@Range[95] (* g[n, r] = {c, f}, where c is the number of factorizations of n with factors <= r and f is the total number of factors in them. - Dean Hickerson, Oct 28 2002 *)
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];Table[Sum[Length[fac],{fac,facs[n]}],{n,50}] (* Gus Wiseman, Apr 18 2021 *)

A301856 Number of subset-products (greater than 1) of factorizations of n into factors greater than 1.

Original entry on oeis.org

0, 1, 1, 3, 1, 4, 1, 7, 3, 4, 1, 12, 1, 4, 4, 14, 1, 12, 1, 12, 4, 4, 1, 29, 3, 4, 7, 12, 1, 17, 1, 27, 4, 4, 4, 36, 1, 4, 4, 29, 1, 17, 1, 12, 12, 4, 1, 62, 3, 12, 4, 12, 1, 29, 4, 29, 4, 4, 1, 53, 1, 4, 12, 47, 4, 17, 1, 12, 4, 17, 1, 90, 1, 4, 12, 12, 4, 17
Offset: 1

Views

Author

Gus Wiseman, Mar 27 2018

Keywords

Comments

For a finite multiset p of positive integers greater than 1 with product n, a pair (t > 1, p) is defined to be a subset-product if there exists a nonempty submultiset of p with product t.

Examples

			The a(12) = 12 subset-products:
12<=(2*2*3), 6<=(2*2*3), 4<=(2*2*3), 3<=(2*2*3), 2<=(2*2*3),
12<=(2*6),   6<=(2*6),   4<=(3*4),   3<=(3*4),   2<=(2*6),
12<=(3*4),
12<=(12).
The a(16) = 14 subset-products:
16<=(16),
16<=(4*4),
16<=(2*8),     8<=(2*8),     4<=(4*4),     2<=(2*8),
16<=(2*2*4),   8<=(2*2*4),   4<=(2*2*4),   2<=(2*2*4),
16<=(2*2*2*2), 8<=(2*2*2*2), 4<=(2*2*2*2), 2<=(2*2*2*2).
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Sum[Length[Union[Times@@@Rest[Subsets[f]]]],{f,facs[n]}],{n,100}]

A317748 Irregular triangle where T(n,k) is the number of factorizations of n into factors > 1 with GCD d = A027750(n, k).

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 2, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 3, 1, 0, 1, 0, 1, 2, 0, 1, 0, 0, 1, 0, 1, 2, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 3, 3, 0, 0, 0, 0, 0, 1, 0, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 06 2018

Keywords

Examples

			Triangle begins:
   1:  0
   2:  0  1
   3:  0  1
   4:  0  1  1
   5:  0  1
   6:  1  0  0  1
   7:  0  1
   8:  0  2  0  1
   9:  0  1  1
  10:  1  0  0  1
  11:  0  1
  12:  2  1  0  0  0  1
  13:  0  1
  14:  1  0  0  1
  15:  1  0  0  1
  16:  0  3  1  0  1
  17:  0  1
  18:  2  0  1  0  0  1
  19:  0  1
  20:  2  1  0  0  0  1
		

Crossrefs

Row lengths are A000005. Row sums are A001055. First column is A281116. Number of nonzero terms in each row is A317751.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    goc[n_,m_]:=Length[Select[facs[n],And[And@@(Divisible[#,m]&/@#),GCD@@(#/m)==1]&]];
    Table[goc[n,d],{n,30},{d,Divisors[n]}]

Extensions

Name edited by Peter Munn, Mar 05 2025

A344089 Flattened tetrangle of reversed strict integer partitions, sorted first by length and then colexicographically.

Original entry on oeis.org

1, 2, 3, 1, 2, 4, 1, 3, 5, 2, 3, 1, 4, 6, 2, 4, 1, 5, 1, 2, 3, 7, 3, 4, 2, 5, 1, 6, 1, 2, 4, 8, 3, 5, 2, 6, 1, 7, 1, 3, 4, 1, 2, 5, 9, 4, 5, 3, 6, 2, 7, 1, 8, 2, 3, 4, 1, 3, 5, 1, 2, 6, 10, 4, 6, 3, 7, 2, 8, 1, 9, 2, 3, 5, 1, 4, 5, 1, 3, 6, 1, 2, 7, 1, 2, 3, 4
Offset: 0

Views

Author

Gus Wiseman, May 12 2021

Keywords

Comments

First differs from the revlex (instead of colex) version for partitions of 12.
The zeroth row contains only the empty partition.
A tetrangle is a sequence of finite triangles.

Examples

			Tetrangle begins:
  0: ()
  1: (1)
  2: (2)
  3: (3)(12)
  4: (4)(13)
  5: (5)(23)(14)
  6: (6)(24)(15)(123)
  7: (7)(34)(25)(16)(124)
  8: (8)(35)(26)(17)(134)(125)
  9: (9)(45)(36)(27)(18)(234)(135)(126)
		

Crossrefs

Positions of first appearances are A015724 plus one.
Taking lex instead of colex gives A026793 (non-reversed: A118457).
Triangle sums are A066189.
Reversing all partitions gives A344090.
The non-strict version is A344091.
A319247 sorts strict partitions by Heinz number.
A329631 sorts reversed strict partitions by Heinz number.

Programs

  • Mathematica
    Table[Reverse/@Sort[Select[IntegerPartitions[n],UnsameQ@@#&]],{n,0,30}]

A056472 Triangle read by rows in which row n lists all factorizations of n.

Original entry on oeis.org

1, 2, 3, 4, 2, 2, 5, 6, 2, 3, 7, 8, 2, 4, 2, 2, 2, 9, 3, 3, 10, 2, 5, 11, 12, 2, 6, 2, 2, 3, 3, 4, 13, 14, 2, 7, 15, 3, 5, 16, 2, 8, 2, 2, 4, 2, 2, 2, 2, 4, 4, 17, 18, 2, 9, 2, 3, 3, 3, 6, 19, 20, 2, 10, 2, 2, 5, 4, 5, 21, 3, 7, 22, 2, 11, 23, 24, 2, 12, 2, 2
Offset: 1

Views

Author

Donald S. McDonald, Dec 07 2002

Keywords

Comments

n comes first, then minimal factorization (12=2*6). Resultant factor is further resolved as much as possible, (2*6 = 2*2*3). The natural number or initial factors are then incremented, (3*4, 13.)

Examples

			E.g., 12 = 2*6 = 2*2*3 = 3*4
1;
2;
3;
4,2,2;
5;
6,2,3;
7;
8,2,4,2,2,2;
9,3,3;
10,2,5;
11;
12,2,6,2,2,3,3,4;
		

Crossrefs

Programs

  • Sage
    def factorizations(n) : return fact_helper(n, 2)
    def fact_helper(n, min) : return sum(([[d] + F for F in fact_helper(n//d, d)] for d in divisors(n) if d >= min and d <= isqrt(n)), [[n]])
    # Eric M. Schmidt, Jun 06 2014

Extensions

More terms from Eric M. Schmidt, Jun 06 2014

A064554 a(n) = Min {k | A064553(k) = n}.

Original entry on oeis.org

1, 2, 3, 4, 7, 6, 13, 8, 9, 14, 29, 12, 37, 26, 21, 16, 53, 18, 61, 28, 39, 58, 79, 24, 49, 74, 27, 52, 107, 42, 113, 32, 87, 106, 91, 36, 151, 122, 111, 56, 173, 78, 181, 116, 63, 158, 199, 48, 169, 98, 159, 148, 239, 54, 203, 104, 183, 214, 271, 84, 281, 226, 117, 64
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 21 2001

Keywords

Comments

A064553(a(n)) = n and A064553(a(k)) <> k for k < a(n). For prime p, a(p)=prime(p-1), which is sequence A055003. - T. D. Noe, Dec 12 2004
a(n) is not multiplicative because a(7*13) = a(91) = 463, but a(7)*a(13) = 13*37 = 481 and 91 is the smallest possible such n. - Christian G. Bower, May 19 2005
a(n) = A080688(n,1). - Reinhard Zumkeller, Oct 01 2012
Minimal shifted Heinz number of a factorization of n, where the shifted Heinz number of a factorization (y_1, ..., y_k) is prime(y_1 - 1) * ... * prime(y_k - 1). - Gus Wiseman, Sep 05 2018

Crossrefs

Cf. A055003 (prime(prime(n)-1)).

Programs

  • Haskell
    a064554 = head . a080688_row  -- Reinhard Zumkeller, Oct 01 2012
  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@Select[facs[n/d],Min@@#1>=d&],{d,Rest[Divisors[n]]}]];
    Table[Min[Times@@Prime/@(#-1)&/@facs[n]],{n,100}] (* Gus Wiseman, Sep 05 2018 *)

A316979 Number of strict factorizations of n into factors > 1 with no equivalent primes.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 3, 1, 3, 1, 1, 1, 5, 1, 1, 2, 3, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 5, 1, 1, 1, 3, 3, 1, 1, 7, 1, 3, 1, 3, 1, 5, 1, 5, 1, 1, 1, 6, 1, 1, 3, 4, 1, 1, 1, 3, 1, 1, 1, 9, 1, 1, 3, 3, 1, 1, 1, 7, 2, 1, 1, 6, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jul 18 2018

Keywords

Comments

In a factorization, two primes are equivalent if each factor has in its prime factorization the same multiplicity of both primes. For example, in 60 = (2*30) the primes {3, 5} are equivalent but {2, 3} and {2, 5} are not.

Examples

			The a(24) = 5 factorizations are (2*3*4), (2*12), (3*8), (4*6), (24).
The a(36) = 4 factorizations are (2*3*6), (2*18), (3*12), (4*9).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    Table[Length[Select[facs[n],And[UnsameQ@@#,UnsameQ@@dual[primeMS/@#]]&]],{n,100}]

Formula

a(prime^n) = A000009(n).

A319237 Positions of nonzero terms in A114592, the list of coefficients in the expansion of Product_{n > 1} (1 - 1/n^s).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 11, 12, 13, 17, 18, 19, 20, 23, 24, 25, 28, 29, 30, 31, 32, 36, 37, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 59, 60, 61, 63, 66, 67, 68, 70, 71, 72, 73, 75, 76, 78, 79, 80, 83, 84, 88, 89, 90, 92, 97, 98, 99, 100, 101, 102
Offset: 1

Views

Author

Gus Wiseman, Sep 15 2018

Keywords

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Join@@Position[Table[Sum[(-1)^Length[f],{f,Select[facs[n],UnsameQ@@#&]}],{n,100}],_Integer?(Abs[#]>0&)]
Previous Showing 31-40 of 77 results. Next