A030009
Euler transform of primes.
Original entry on oeis.org
1, 2, 6, 15, 37, 85, 192, 414, 879, 1816, 3694, 7362, 14480, 28037, 53644, 101379, 189587, 350874, 643431, 1169388, 2108045, 3770430, 6694894, 11804968, 20679720, 35999794, 62298755, 107198541, 183462856, 312357002, 529173060, 892216829, 1497454396, 2502190992
Offset: 0
-
with(numtheory):
a:= proc(n) option remember; `if`(n=0, 1, add(add(
d*ithprime(d), d=divisors(j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..40); # Alois P. Heinz, Sep 06 2008
-
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*Prime[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Apr 16 2014, after Alois P. Heinz *)
-
a(n)=if(n<0,0,polcoeff(prod(i=1,n,(1-x^i)^-prime(i),1+x*O(x^n)),n))
-
# uses[EulerTransform from A166861]
b = EulerTransform(lambda n: nth_prime(n))
print([b(n) for n in range(37)]) # Peter Luschny, Nov 11 2020
A023880
Number of partitions in expanding space.
Original entry on oeis.org
1, 1, 5, 32, 298, 3531, 51609, 894834, 17980052, 410817517, 10518031721, 298207687029, 9273094072138, 313757506696967, 11474218056441581, 450961669608632160, 18954582520550896213, 848384721904740036422, 40285256621556957160307, 2022695276960566890383148
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1-x^k)^(k^k): k in [1..m]]) )); // G. C. Greubel, Oct 31 2018
-
with(numtheory):
a:= proc(n) option remember; `if`(n=0, 1, add(
add(d*d^d, d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..30); # Alois P. Heinz, Feb 04 2015
-
nmax=20; CoefficientList[Series[Product[1/(1-x^k)^(k^k),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Mar 14 2015 *)
-
m=30; x='x+O('x^m); Vec(prod(k=1, m, 1/(1-x^k)^(k^k))) \\ G. C. Greubel, Oct 31 2018
-
# uses[EulerTransform from A166861]
b = EulerTransform(lambda n: n^n)
print([b(n) for n in range(20)]) # Peter Luschny, Nov 11 2020
A258349
Expansion of Product_{k>=1} 1/(1-x^k)^(k*(k-1)/2).
Original entry on oeis.org
1, 0, 1, 3, 7, 13, 28, 52, 107, 203, 396, 741, 1409, 2596, 4813, 8777, 15972, 28737, 51553, 91644, 162288, 285377, 499653, 869758, 1507615, 2599974, 4465606, 7635607, 13005252, 22061424, 37287395, 62788012, 105365891, 176211393, 293741195, 488101711, 808604106
Offset: 0
-
nmax=40; CoefficientList[Series[Product[1/(1-x^k)^(k*(k-1)/2),{k,1,nmax}],{x,0,nmax}],x]
-
# uses[EulerTransform from A166861]
b = EulerTransform(lambda n: binomial(n,2))
print([b(n) for n in range(37)]) # Peter Luschny, Nov 11 2020
A258352
Expansion of Product_{k>=1} 1/(1-x^k)^(k*(k-1)*(k-2)/6).
Original entry on oeis.org
1, 0, 0, 1, 4, 10, 21, 39, 76, 145, 294, 581, 1169, 2276, 4435, 8494, 16237, 30768, 58221, 109466, 205223, 382658, 710808, 1314091, 2420437, 4439753, 8115645, 14781062, 26833241, 48550863, 87575527, 157480827, 282362462, 504819198, 900058558, 1600424247
Offset: 0
-
nmax=40; CoefficientList[Series[Product[1/(1-x^k)^(k*(k-1)*(k-2)/6),{k,1,nmax}],{x,0,nmax}],x]
-
# uses[EulerTransform from A166861]
b = EulerTransform(lambda n: binomial(n, 3))
print([b(n) for n in range(37)]) # Peter Luschny, Nov 11 2020
A261050
Expansion of Product_{k>=1} (1+x^k)^(Fibonacci(k)).
Original entry on oeis.org
1, 1, 1, 3, 5, 10, 19, 36, 67, 127, 236, 438, 811, 1496, 2750, 5046, 9224, 16827, 30630, 55623, 100803, 182342, 329205, 593326, 1067591, 1917885, 3440207, 6162004, 11021921, 19688757, 35126020, 62590629, 111398910, 198044551, 351700332, 623918086, 1105715149
Offset: 0
-
f:= proc(n) option remember; (<<1|1>, <1|0>>^n)[1, 2] end:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(f(i), j)*b(n-i*j, i-1), j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..50); # Alois P. Heinz, Aug 08 2015
-
nmax=40; CoefficientList[Series[Product[(1+x^k)^Fibonacci[k],{k,1,nmax}],{x,0,nmax}],x]
A283264
Expansion of exp( Sum_{n>=1} -sigma_4(n)*x^n/n ) in powers of x.
Original entry on oeis.org
1, -1, -8, -19, -9, 127, 500, 1038, 448, -4967, -21463, -50043, -59084, 70418, 600080, 1837349, 3532062, 3179251, -6965009, -42260393, -119597290, -224546234, -223670132, 292245783, 2156083245, 6428174973, 13030612271, 16820582355, -133402359, -78307103593
Offset: 0
Cf.
A023872 (exp( Sum_{n>=1} sigma_4(n)*x^n/n )).
A088327
G.f.: exp(Sum_{k>=1} B(x^k)/k), where B(x) = x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + ... = (C(x)-1)/x and C is the g.f. for the Catalan numbers A000108.
Original entry on oeis.org
1, 1, 3, 8, 25, 77, 256, 854, 2940, 10229, 36124, 128745, 463137, 1677816, 6118165, 22432778, 82660369, 305916561, 1136621136, 4238006039, 15852603939, 59471304434, 223704813807, 843547443903, 3188064830876, 12074092672950, 45816941923597, 174173975322767
Offset: 0
-
m:=35;
f:= func< x | (&*[1/(1-x^j)^Catalan(j): j in [1..m+2]]) >;
R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( f(x) )); // G. C. Greubel, Dec 12 2022
-
with(numtheory):
a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
binomial(2*d, d)/(d+1), d=divisors(j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..40); # Alois P. Heinz, Sep 10 2012
-
With[{nn=35}, CoefficientList[Series[Product[1/(1-x^i)^CatalanNumber[i], {i,nn}], {x,0,nn}], x]] (* Geoffrey Critzer, Feb 26 2013 *)
-
# uses[EulerTransform from A166861]
b = EulerTransform(lambda n: binomial(2*n, n)/(n+1))
print([b(n) for n in range(30)]) # Peter Luschny, Nov 11 2020
A260916
Expansion of Product_{k>=1} ((1+x^k)/(1-x^k))^(Fibonacci(k)).
Original entry on oeis.org
1, 2, 4, 10, 22, 48, 104, 220, 460, 954, 1956, 3976, 8026, 16084, 32032, 63440, 124974, 245008, 478204, 929452, 1799508, 3471396, 6673724, 12788976, 24433528, 46546738, 88432264, 167575474, 316768948, 597389576, 1124092476, 2110661644, 3955006820, 7396477224
Offset: 0
-
nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^Fibonacci[k], {k, 1, nmax}], {x, 0, nmax}], x]
A261031
Euler transform of Lucas numbers.
Original entry on oeis.org
1, 1, 4, 8, 21, 44, 103, 217, 477, 999, 2116, 4373, 9055, 18464, 37576, 75725, 152047, 303158, 602085, 1189242, 2340065, 4584027, 8947865, 17399906, 33725509, 65153150, 125493914, 241011287, 461611911, 881806114, 1680336592, 3194346093, 6058770147, 11466709780
Offset: 0
-
L:= proc(n) option remember; `if`(n<2, 2-n, L(n-2)+L(n-1)) end:
a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
L(d), d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..40); # Alois P. Heinz, Jan 12 2017
-
CoefficientList[Series[Product[1/(1 - x^k)^LucasL[k], {k, 1, 30}], {x, 0, 30}], x]
-
# uses[EulerTransform from A166861]
a = BinaryRecurrenceSequence(1, 1, 2)
b = EulerTransform(a)
print([b(n) for n in range(34)]) # Peter Luschny, Nov 11 2020
A200544
Number of distinct bags of distinct sequences of 1s and 2s such that the sum of all terms is n.
Original entry on oeis.org
1, 1, 3, 6, 14, 28, 61, 122, 253, 505, 1017, 2008, 3976, 7769, 15169, 29379, 56751, 108993, 208725, 397913, 756385, 1432578, 2705744, 5094749, 9568504, 17922756, 33492061, 62438472, 116151352, 215612548, 399451325, 738612472, 1363261171, 2511748010, 4620024202
Offset: 0
For n = 4, a(4)=14 and the bags are: 1/1/1/1; 1/1/1,1; 1/1/2; 1/1,1,1; 1/1,2; 1/2,1; 1,1/1,1; 1,1/2; 2/1,1; 2/2; 1,1,1,1; 1,1,2; 1,2,1; 2,1,1.
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- W. S. Gray, K. Ebrahimi-Fard, Affine SISO Feedback Transformation Group and Its Faa di Bruno Hopf Algebra, arXiv:1411.0222 [math.OC], 2014.
- Vaclav Kotesovec, Asymptotics of the Euler transform of Fibonacci numbers, arXiv:1508.01796 [math.CO], Aug 07 2015
- Vaclav Kotesovec, Asymptotics of sequence A034691
- Sarah Nibs, C# code to generate sequence terms
- Wikipedia, Jenga
-
with(numtheory):with(combinat):
a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
fibonacci(d+1), d=divisors(j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..40); # Alois P. Heinz, Nov 05 2013
-
CoefficientList[Series[Product[1/(1-x^k)^Fibonacci[k+1], {k, 1, 40}], {x, 0, 40}], x] (* Vaclav Kotesovec, Aug 05 2015 *)
-
# uses[EulerTransform from A166861]
a = BinaryRecurrenceSequence(1, 1, 1)
b = EulerTransform(a)
print([b(n) for n in range(35)]) # Peter Luschny, Nov 11 2020
Corrected terms from n=8 and onwards by
Sarah Nibs, Oct 18 2013
C# program corrected and made much more efficient by
Sarah Nibs, Oct 18 2013
Comments