cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 45 results. Next

A261329 Euler transform of Pell numbers.

Original entry on oeis.org

1, 1, 3, 8, 23, 62, 175, 477, 1319, 3602, 9851, 26779, 72726, 196724, 531157, 1430144, 3842911, 10303055, 27570786, 73637306, 196333303, 522584286, 1388786089, 3685169795, 9764703347, 25838430572, 68282175170, 180221449469, 475102410065, 1251038486529
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 15 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=40; Pell[0]=0; Pell[1]=1; Pell[n_]:=Pell[n] = 2*Pell[n-1] + Pell[n-2]; CoefficientList[Series[Product[1/(1-x^k)^Pell[k], {k, 1, nmax}], {x, 0, nmax}], x]
  • SageMath
    # uses[EulerTransform from A166861]
    a = BinaryRecurrenceSequence(2, 1)
    b = EulerTransform(a)
    print([b(n) for n in range(30)]) # Peter Luschny, Nov 11 2020

Formula

G.f.: Product_{k>=1} 1/(1-x^k)^(A000129(k)).
a(n) ~ (1+sqrt(2))^n * exp(-1/8 + 2^(1/4)*sqrt(n) + s) / (2^(11/8) * sqrt(Pi) * n^(3/4)), where s = Sum_{k>=2} 1/(((sqrt(2)+1)^k - (sqrt(2)-1)^k - 2)*k) = 0.17615706029370539578355193664752741450665073523628663099586621933373...
G.f.: exp(Sum_{k>=1} x^k/(k*(1 - 2*x^k - x^(2*k)))). - Ilya Gutkovskiy, May 30 2018

A337009 Triangle of the Multiset Transform of the Fibonacci Sequence.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 5, 3, 1, 1, 8, 11, 6, 3, 1, 1, 13, 19, 13, 6, 3, 1, 1, 21, 37, 25, 14, 6, 3, 1, 1, 34, 65, 52, 27, 14, 6, 3, 1, 1, 55, 120, 98, 58, 28, 14, 6, 3, 1, 1, 89, 210, 191, 113, 60, 28, 14, 6, 3, 1, 1, 144, 376, 360, 229, 119, 61, 28, 14, 6, 3, 1, 1, 233, 654, 678, 443, 244, 121, 61, 28, 14, 6, 3, 1, 1
Offset: 1

Views

Author

R. J. Mathar, Aug 11 2020

Keywords

Comments

Short definition of the Multiset Transformation: supposed we have F(w) distinct objects of weight w. Then T(n,k) is the number of bags of objects with total weight n containing k objects. Multisets means that objects may appear more than once in the bag, but the order of the objects in the bag does not matter.
Apparently A200544 is the limit of the reversed rows as n approaches infinity.

Examples

			The triangle starts with rows n>=1 and columns k>=1:
    1
    1     1
    2     1     1
    3     3     1     1
    5     5     3     1     1
    8    11     6     3     1     1
   13    19    13     6     3     1     1
   21    37    25    14     6     3     1     1
   34    65    52    27    14     6     3     1     1
   55   120    98    58    28    14     6     3     1     1
   89   210   191   113    60    28    14     6     3     1     1
  144   376   360   229   119    61    28    14     6     3     1     1
  233   654   678   443   244   121    61    28    14     6     3     1     1
  377  1149  1255   866   481   250   122    61    28    14     6     3     1  1
  ...
		

Crossrefs

Cf. A000045 (column k=1), A089098 (column k=2), A166861 (row sums), A200544 (limiting row?), A357475.

Programs

  • Maple
    F:= proc(n) option remember; (<<1|1>, <1|0>>^n)[1, 2] end:
    b:= proc(n, i) option remember; expand(`if`(n=0 or i=1, x^n,
          add(binomial(F(i)+j-1, j)*b(n-i*j, i-1)*x^j, j=0..n/i)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n$2)):
    seq(T(n), n=1..12);  # Alois P. Heinz, Oct 29 2021
  • Mathematica
    nn = 13;
    Rest@CoefficientList[#, y]& /@ (Series[Product[1/(1 - y x^i)^Fibonacci[i], {i, 1, nn}], {x, 0, nn}] // Rest@CoefficientList[#, x]&) // Flatten (* Jean-François Alcover, Oct 29 2021 *)

Formula

G.f.: Product_{j>=1} 1/(1-y*x^j)^Fibonacci(j). - Jean-François Alcover, Oct 29 2021
Sum_{k=0..n} (-1)^k * T(n,k) = A357475(n). - Alois P. Heinz, Apr 30 2023

A358369 Euler transform of 2^floor(n/2), (A016116).

Original entry on oeis.org

1, 1, 3, 5, 12, 20, 43, 73, 146, 250, 475, 813, 1499, 2555, 4592, 7800, 13761, 23253, 40421, 67963, 116723, 195291, 332026, 552882, 932023, 1544943, 2585243, 4267081, 7094593, 11662769, 19281018, 31575874, 51937608, 84753396, 138772038, 225693778, 368017636
Offset: 0

Views

Author

Peter Luschny, Nov 17 2022

Keywords

Crossrefs

Sequences that can be represented as a EulerTransform(BinaryRecurrenceSequence()) include A000009, A000041, A000712, A001970, A002513, A010054, A015128, A022567, A034691, A111317, A111335, A117410, A156224, A166861, A200544, A261031, A261329, A358449.

Programs

  • Maple
    BinaryRecurrenceSequence := proc(b, c, u0:=0, u1:=1) local u;
    u := proc(n) option remember; if n < 2 then return [u0, u1][n + 1] fi;
    b*u(n - 1) + c*u(n - 2) end; u end:
    EulerTransform := proc(a) local b;
    b := proc(n) option remember; if n = 0 then return 1 fi; add(add(d * a(d),
    d = NumberTheory:-Divisors(j)) * b(n-j), j = 1..n) / n end; b end:
    a := EulerTransform(BinaryRecurrenceSequence(0, 2, 1)): seq(a(n), n=0..36);
  • Python
    from typing import Callable
    from functools import cache
    from sympy import divisors
    def BinaryRecurrenceSequence(b:int, c:int, u0:int=0, u1:int=1) -> Callable:
        @cache
        def u(n: int) -> int:
            if n < 2:
                return [u0, u1][n]
            return b * u(n - 1) + c * u(n - 2)
        return u
    def EulerTransform(a: Callable) -> Callable:
        @cache
        def b(n: int) -> int:
            if n == 0:
                return 1
            s = sum(sum(d * a(d) for d in divisors(j)) * b(n - j)
                for j in range(1, n + 1))
            return s // n
        return b
    b = BinaryRecurrenceSequence(0, 2, 1)
    a = EulerTransform(b)
    print([a(n) for n in range(37)])
  • Sage
    # uses[EulerTransform from A166861]
    b = BinaryRecurrenceSequence(0, 2, 1)
    a = EulerTransform(b)
    print([a(n) for n in range(37)])
    

A111335 Let qf(a,q) = Product_{j>=0} (1 - a*q^j); g.f. is qf(q^3,q^4)/qf(q,q^4).

Original entry on oeis.org

1, 1, 1, 0, 0, 1, 1, 0, -1, 0, 2, 1, -1, -1, 1, 2, -1, -2, 1, 3, 1, -3, -1, 3, 1, -3, -2, 4, 4, -3, -4, 3, 5, -3, -7, 2, 9, 0, -9, -1, 10, 3, -11, -5, 12, 8, -11, -10, 10, 12, -11, -15, 11, 19, -7, -21, 6, 24, -5, -28, 1, 31, 4, -33, -8, 36, 12, -38, -18, 40, 27, -40, -33, 40, 39, -40, -49, 38, 60, -34, -67, 30, 75, -25, -87, 18, 98
Offset: 0

Views

Author

N. J. A. Sloane, Nov 09 2005

Keywords

Crossrefs

Cf. A111330.

Programs

  • Maple
    # Uses EulerTransform from A358369.
    a := EulerTransform(BinaryRecurrenceSequence(0, -1)):
    seq(a(n), n=0..86); # Peter Luschny, Nov 17 2022
  • PARI
    {a(n)=if(n<0, 0, polcoeff( prod(k=0,n\2, (1-x^(2*k+1))^(-(-1)^k), 1+x*O(x^n)), n))} /* Michael Somos, Nov 11 2005 */
    
  • Sage
    # uses[EulerTransform from A166861]
    b = BinaryRecurrenceSequence(0, -1)
    a = EulerTransform(b)
    print([a(n) for n in range(87)]) # Peter Luschny, Nov 17 2022

Formula

Euler transform of period 4 sequence [1, 0, -1, 0, ...]. - Michael Somos, Nov 10 2005
G.f.: Product_{k>0} (1-x^(2k-1))^((-1)^k). - Michael Somos, Nov 11 2005
G.f.: exp( Sum_{k >= 1} 1/(k*(x^k + x^(-k))) ). - Peter Bala, Sep 28 2023

A260787 G.f.: Product_{k>=1} 1/(1-x^k)^Fibonacci(k+2).

Original entry on oeis.org

1, 2, 6, 15, 38, 89, 210, 474, 1065, 2339, 5091, 10919, 23230, 48887, 102126, 211599, 435561, 890617, 1810786, 3661118, 7365473, 14747049, 29397160, 58356179, 115392801, 227332038, 446304671, 873298579, 1703463864, 3312873935, 6424553973, 12425158365, 23968214357, 46120280910, 88535346223
Offset: 0

Views

Author

N. J. A. Sloane, Aug 05 2015

Keywords

Comments

In general, the sequence with g.f. Product_{k>=1} 1/(1-x^k)^Fibonacci(k+z), where z is nonnegative integer, is asymptotic to phi^(n + z/4) / (2 * sqrt(Pi) * 5^(1/8) * n^(3/4)) * exp((phi/10 - 1/2) * Fibonacci(z) - Fibonacci(z+1)/10 + 2 * 5^(-1/4) * phi^(z/2) * sqrt(n) + s), where s = Sum_{k>=2} (Fibonacci(z) + Fibonacci(z+1) * phi^k) / ((phi^(2*k) - phi^k - 1)*k) and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Aug 06 2015

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[Product[1/(1-x^k)^Fibonacci[k+2], {k, 1, 20}], {x, 0, 20}], x] (* Vaclav Kotesovec, Aug 05 2015 *)

Formula

a(n) ~ phi^(n+1/2) / (2 * sqrt(Pi) * 5^(1/8) * n^(3/4)) * exp(phi/10 - 7/10 + 2*5^(-1/4)*phi*sqrt(n) + s), where s = Sum_{k>=2} (1 + 2*phi^k) / ((phi^(2*k) - phi^k - 1)*k) = 1.39069800276768443926918973402733105305129194986259856042723... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Aug 06 2015

A261330 Euler transform of Pell-Lucas numbers.

Original entry on oeis.org

1, 2, 9, 30, 106, 348, 1153, 3698, 11798, 37034, 115294, 355202, 1086080, 3294912, 9931019, 29745296, 88597104, 262508288, 774073787, 2272321666, 6642701371, 19342768210, 56117550874, 162247236638, 467563212923, 1343273262184, 3847866714452, 10991864363660
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 15 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=40; cPell[0]=2; cPell[1]=2; cPell[n_]:=cPell[n] = 2*cPell[n-1] + cPell[n-2]; CoefficientList[Series[Product[1/(1-x^k)^cPell[k], {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1-x^k)^(A002203(k)).
a(n) ~ (1+sqrt(2))^n * exp(-1 + 2^(-3/2) + 2*sqrt(n) + s) / (2 * sqrt(Pi) * n^(3/4)), where s = Sum_{k>=2} = 2/(((1+sqrt(2))^k + 2/(1 + (1+sqrt(2))^k) - 3)*k) = 0.40371233206538058741995064489690066306587648488344483...

A292386 Expansion of Product_{k>=1} (1 - x^k)^(k*(k+1)/2).

Original entry on oeis.org

1, -1, -3, -3, -1, 10, 20, 36, 28, -11, -103, -245, -397, -448, -214, 464, 1817, 3680, 5660, 6473, 4362, -3232, -18428, -41946, -70589, -94890, -96996, -49673, 78907, 317995, 673299, 1105044, 1491333, 1605102, 1094914, -479358, -3561322, -8404118, -14781724, -21595744, -26450603, -25329527
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 15 2017

Keywords

Comments

Convolution inverse of A000294 (Euler transform of the triangular numbers).

Crossrefs

Programs

  • Mathematica
    nmax = 41; CoefficientList[Series[Product[(1 - x^k)^(k (k + 1)/2), {k, 1, nmax}], {x, 0, nmax}], x]
  • SageMath
    # uses[EulerTransform from A166861]
    b = EulerTransform(lambda n: -binomial(n+1, 2))
    print([b(n) for n in range(37)]) # Peter Luschny, Nov 11 2020

Formula

G.f.: Product_{k>=1} (1 - x^k)^(k*(k+1)/2).

A109509 Number of hierarchical orderings with at least 2 elements on each level for n unlabeled elements. Unlabeled analog of A097236.

Original entry on oeis.org

1, 0, 1, 1, 3, 4, 9, 14, 28, 47, 88, 152, 279, 486, 876, 1539, 2744, 4824, 8551, 15023, 26503, 46509, 81747, 143210, 251007, 438915, 767403, 1339487, 2336955, 4071906, 7090589, 12333894, 21440241, 37235775, 64624267, 112067176, 194209732, 336313393, 582019000
Offset: 0

Views

Author

Thomas Wieder, Jun 30 2005

Keywords

Comments

A109509 is the Euler transform of the right-shifted Fibonacci numbers A000045.

Examples

			Let * denote an unlabeled element.
Let | denote a delimiter between two hierarchies. E.g., for n=3 we have in **|* two hierarchies (each with one level only).
Let : denote a higher level (within a single hierarchy). E.g., for n=6 we have in ***:**:* a single hierarchy distributed over three levels.
Then a(5) = 4 because we have *****, ***:**, **:***, **|***.
		

Crossrefs

Programs

  • Maple
    SeqSetSetxU := [T, {T=Set(S),S=Sequence(U,card>=1),U=Set(Z,card>=2)},unlabeled]; seq(count(SeqSetSetxU,size=j),j=1..25); # where x is an integer 1, 2, 3,... # x=2 gives 2 individuals per level.
  • Mathematica
    CoefficientList[Series[Product[1/(1-x^k)^Fibonacci[k-1], {k, 1, 40}], {x, 0, 40}], x] (* Vaclav Kotesovec, Aug 06 2015 *)
  • PARI
    ET(v)=Vec(prod(k=1,#v,1/(1-x^k+x*O(x^#v))^v[k]))
    ET(vector(40,n,fibonacci(n-1)))

Formula

a(n) ~ phi^(n-1/4) / (2 * sqrt(Pi) * 5^(1/8) * n^(3/4)) * exp(phi/10 - 1/2 + 2*5^(-1/4)*sqrt(n/phi) + s), where s = Sum_{k>=2} 1/((phi^(2*k) - phi^k - 1)*k) = 0.189744799982532613329750744326543900883761701983311537716143669... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Aug 06 2015

Extensions

Edited with more terms from Franklin T. Adams-Watters, Oct 21 2009

A117410 Expansion of q^(-5/24) * eta(q^2)^3 / eta(q) in powers of q.

Original entry on oeis.org

1, 1, -1, 0, -1, -2, 1, -1, -1, 0, 1, 1, -1, 1, 0, 2, 1, 0, 0, -1, 2, 1, 0, -1, 0, -1, 0, -1, 1, 1, -3, 0, -1, -1, -1, 1, 0, 0, 0, -1, -2, 0, 1, 0, 1, 0, 1, 0, 0, -1, 2, -1, 0, 1, 1, 3, 0, -1, 0, 1, -1, 0, 1, 0, 0, 2, 0, 1, -1, 0, -2, -1, 1, 0, 0, -1, 0, 0, 1, -1, 0, -1, -1, -1, 0, -2, -1, 0, 2, 1, -2, 0, 1, -1, 0, -2, -1, 1, -1, 1, 0, 0, 0, 1, 0
Offset: 0

Views

Author

Michael Somos, Mar 13 2006

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x - x^2 - x^4 - 2*x^5 + x^6 - x^7 - x^8 + x^10 + x^11 - x^12 + x^13 + ...
G.f. = q^5 + q^29 - q^53 - q^101 - 2*q^125 + q^149 - q^173 - q^197 + q^245 + ...
		

Crossrefs

Cf. A107034.

Programs

  • Maple
    # Uses EulerTransform from A358369.
    a := EulerTransform(BinaryRecurrenceSequence(0, 1, -2)):
    seq(a(n), n = 0..104); # Peter Luschny, Nov 17 2022
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[x^2]^3 / QPochhammer[ x], {x, 0, n}]; (* Michael Somos, Jan 31 2015 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 / eta(x + A), n))};
    
  • PARI
    q='q+O('q^99); Vec(eta(q^2)^3/eta(q)) \\ Altug Alkan, Apr 17 2018
    
  • Sage
    # uses[EulerTransform from A166861]
    b = BinaryRecurrenceSequence(0, 1, -2)
    a = EulerTransform(b)
    print([a(n) for n in range(105)]) # Peter Luschny, Nov 17 2022

Formula

Expansion of psi(x)^2 * chi(-x) = f(-x)^2 / chi(-x)^3 = f(-x)^5 / phi(-x)^3 = f(-x^2)^2 / chi(-x) = f(-x^2)^3 / f(-x) = psi(x) * f(-x^2) = f(x) * f(-x^4) = phi(-x)^2 / chi(-x)^5 in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions. - Michael Somos, Jan 31 2015
Euler transform of period 2 sequence [ 1, -2, ...].
Given A = A0 + A1 + A2 + A3 + A4 is the 5-section, then 0 = A3 * A1^2 - A2 * A4^2.
Given A = A0 + A1 + A2 + A3 + A4 + A5 + A6 is the 7-section, then 0 = A0*A6 + A1*A5 + A2*A4 + 4*A3^2, A3 = x^10 * A(x^49).
G.f.: Product_{k>0} (1 + x^k) * (1 - x^(2*k))^2.
A107034(n) = (-1)^n * a(n).

A347011 Euler transform of j-> ceiling(2^(j-2)).

Original entry on oeis.org

1, 1, 2, 4, 9, 19, 43, 93, 207, 453, 999, 2185, 4796, 10470, 22871, 49815, 108427, 235515, 511074, 1107248, 2396299, 5179169, 11181877, 24113939, 51949572, 111801422, 240381703, 516355235, 1108186951, 2376314763, 5091422730, 10900063776, 23317805916
Offset: 0

Views

Author

Alois P. Heinz, Aug 10 2021

Keywords

Comments

Differs from A206301 first at n=10.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          b(n-i*j, i-1)*binomial(ceil(2^(i-2))+j-1, j), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..35);
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(d*
           ceil(2^(d-2)), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    seq(a(n), n=0..35);
  • Mathematica
    CoefficientList[Series[1/(1-x) * Product[1/(1 - x^k)^(2^(k-2)), {k, 2, 40}], {x, 0, 40}], x] (* Vaclav Kotesovec, Aug 11 2021 *)

Formula

G.f.: Product_{j>0} 1/(1-x^j)^ceiling(2^(j-2)).
Previous Showing 31-40 of 45 results. Next