A336214
a(n) = Sum_{k=0..n} k^n * binomial(n,k)^n, with a(0)=1.
Original entry on oeis.org
1, 1, 8, 270, 41984, 30706250, 94770093312, 1336016204844832, 76829717664330940416, 19838680914222199482800274, 20521247958509575370600000000000, 94285013320530947020636486516362047300, 1715947732437668013396578734960052732361179136
Offset: 0
-
Flatten[{1, Table[Sum[k^n*Binomial[n, k]^n, {k, 1, n}], {n, 1, 15}]}]
-
a(n) = if (n==0, 1, sum(k=0, n, k^n * binomial(n,k)^n)); \\ Michel Marcus, Jul 13 2020
A209427
T(n,k) = binomial(n,k)^n.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 27, 27, 1, 1, 256, 1296, 256, 1, 1, 3125, 100000, 100000, 3125, 1, 1, 46656, 11390625, 64000000, 11390625, 46656, 1, 1, 823543, 1801088541, 64339296875, 64339296875, 1801088541, 823543, 1, 1, 16777216, 377801998336, 96717311574016, 576480100000000, 96717311574016, 377801998336, 16777216, 1
Offset: 0
This triangle begins:
1;
1, 1;
1, 4, 1;
1, 27, 27, 1;
1, 256, 1296, 256, 1;
1, 3125, 100000, 100000, 3125, 1;
1, 46656, 11390625, 64000000, 11390625, 46656, 1;
1, 823543, 1801088541, 64339296875, 64339296875, 1801088541, 823543, 1;
1, 16777216, 377801998336, 96717311574016, 576480100000000, 96717311574016, 377801998336, 16777216, 1; ...
-
Table[Binomial[n,k]^n, {n,0,10}, {k,0,n}]// Flatten (* G. C. Greubel, Jan 03 2018 *)
-
{T(n,k)=binomial(n,k)^n}
for(n=0,10,for(k=0,n,print1(T(n,k),","));print(""))
A336202
a(n) = Sum_{k=0..n} (-n)^k * binomial(n,k)^n.
Original entry on oeis.org
1, 0, -3, 136, 3585, -8065624, 985282165, 102324513620736, -758462117693095935, -310124007268556369914448, 59000420766060452235999162501, 231739512209034254162941881236647760, -948238573709799908746228205852168505192191, -43263440520748047736633474769642007589423961473152
Offset: 0
-
a[n_] := Sum[If[n == k == 0, 1, (-n)^k] * Binomial[n, k]^n, {k, 0, n}]; Array[a, 14, 0] (* Amiram Eldar, May 01 2021 *)
-
{a(n) = sum(k=0, n, (-n)^k*binomial(n, k)^n)}
A336212
a(n) = Sum_{k=0..n} 3^k * binomial(n,k)^n.
Original entry on oeis.org
1, 4, 22, 352, 19426, 3862744, 2764634356, 7403121210496, 73087416841865890, 2751096296949421766824, 387442256655054793494004132, 210421903024207931092658380560256, 431805731803048897945138363105712865124, 3443300668674111298036287560913860498279204224
Offset: 0
-
Table[Sum[3^k * Binomial[n, k]^n, {k, 0, n}], {n, 0, 15}]
-
{a(n) = sum(k=0, n, 3^k*binomial(n, k)^n)} \\ Seiichi Manyama, Jul 13 2020
A336270
a(n) = Sum_{k=0..n} Sum_{j=0..k} (binomial(n,k) * binomial(k,j))^n.
Original entry on oeis.org
1, 3, 15, 381, 67635, 83118753, 813824623689, 58040410068847251, 32150480245981639533315, 154935057570894645075940703673, 5474671509704049919709361235659936825, 1600436120524545216094358662984789029130593831
Offset: 0
-
Table[Sum[Sum[(Binomial[n, k] Binomial[k, j])^n, {j, 0, k}], {k, 0, n}], {n, 0, 11}]
Table[(n!)^n SeriesCoefficient[Sum[x^k/(k!)^n, {k, 0, n}]^3, {x, 0, n}], {n, 0, 11}]
-
a(n) = sum(k=0, n, sum(j=0, k, (binomial(n,k) * binomial(k,j))^n)); \\ Michel Marcus, Jul 16 2020
A328810
a(n) = Sum_{i=0..n} binomial(n,i)*Sum_{j=0..i} binomial(i,j)^n.
Original entry on oeis.org
1, 3, 11, 93, 2583, 260613, 99915029, 144072750195, 808177412109895, 16892305881120020613, 1388286655114683125139201, 423109739462061163278604529475, 511885816860737850466697173188711669, 2296554708428991868313593456071099604464483
Offset: 0
-
Table[Sum[Binomial[n, i]*Sum[Binomial[i, j]^n, {j, 0, i}], {i, 0, n}], {n, 0, 15}] (* Vaclav Kotesovec, Oct 28 2019 *)
-
{a(n) = sum(i=0, n, binomial(n, i)*sum(j=0, i, binomial(i, j)^n))}
A328811
a(n) = Sum_{i=0..n} (-1)^(n-i)*binomial(n,i)*Sum_{j=0..i} binomial(i,j)^n.
Original entry on oeis.org
1, 1, 3, 31, 1255, 161671, 75481581, 121338954577, 734884394666535, 15970479086714049751, 1347242827078365957146473, 415839472158527880691583531617, 507266883682599825619985300960971525, 2284735689605775548174387143718048664963601
Offset: 0
-
Table[Sum[(-1)^(n-i)*Binomial[n, i]*Sum[Binomial[i, j]^n, {j, 0, i}], {i, 0, n}], {n, 0, 15}] (* Vaclav Kotesovec, Oct 28 2019 *)
-
{a(n) = sum(i=0, n, (-1)^(n-i)*binomial(n, i)*sum(j=0, i, binomial(i, j)^n))}
A336213
a(n) = Sum_{k=0..n} k^k * binomial(n,k)^n, with a(0)=1.
Original entry on oeis.org
1, 2, 9, 163, 12609, 3906251, 4835455813, 23882051929709, 470073929716006913, 36867039626275056203923, 11562789460238169439667262501, 14393917436542502296957220221339601, 72060131612303615870363237649174605005057, 1424448870088911493303605765206905153730451241313
Offset: 0
-
Table[1 + Sum[k^k * Binomial[n, k]^n, {k, 1, n}], {n, 0, 15}]
-
a(n) = if (n==0, 1, sum(k=0, n, k^k * binomial(n,k)^n)); \\ Michel Marcus, Jul 13 2020
A295611
a(n) = Sum_{k=0..n} (-1)^k*binomial(n,k)^k.
Original entry on oeis.org
1, 0, 0, 6, -30, -280, 35070, -2508268, -47103462, 241470400824, -256752145545390, 128291714550379292, 2203924344437376054780, -37693423679943326954848176, 485163732930867224220253809178, 27101025121379607823580070619517816
Offset: 0
-
Table[Sum[(-1)^k Binomial[n, k]^k, {k, 0, n}], {n, 0, 15}]
Table[Sum[(-1)^k (n!/(k! (n - k)!))^k, {k, 0, n}], {n, 0, 15}]
-
a(n) = sum(k=0, n, (-1)^k*binomial(n,k)^k); \\ Michel Marcus, Nov 25 2017
A336829
a(n) = Sum_{k=0..n} binomial(n+k,k)^n.
Original entry on oeis.org
1, 3, 46, 9065, 25561876, 1048567813062, 632156164654144530, 5652307059542612442465921, 755658094192422806457805924637704, 1521188219372604726826961340683399629967888, 46388428590466766659538640978460161019178279424832676
Offset: 0
-
[(&+[Binomial(2*n-j,n)^n: j in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 31 2022
-
Table[Sum[Binomial[n + k, k]^n, {k, 0, n}], {n, 0, 10}]
-
a(n) = sum(k=0, n, binomial(n+k, k)^n); \\ Michel Marcus, Aug 05 2020
-
def A336829(n): return sum(binomial(2*n-j, n)^n for j in (0..n))
[A336829(n) for n in (0..20)] # G. C. Greubel, Aug 31 2022
Comments