cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A001193 a(n) = (n+1)*(2*n)!/(2^n*n!) = (n+1)*(2n-1)!!.

Original entry on oeis.org

1, 2, 9, 60, 525, 5670, 72765, 1081080, 18243225, 344594250, 7202019825, 164991726900, 4111043861925, 110681950128750, 3201870700153125, 99044533658070000, 3262279327362680625, 113987877673731311250, 4211218814057295665625, 164015890652757831187500
Offset: 0

Views

Author

Keywords

Comments

Solution to y' = A(x), y(0) = 0 satisfies 0 = x^2 + 2*y^2*x - y^2, where A(x) = e.g.f. - Michael Somos, Mar 11 2004

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 166-167.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

From Johannes W. Meijer, Nov 12 2009: (Start)
Equals the first right hand column of A167591.
Equals the first left hand column of A167594. (End)
Cf. A059366.

Programs

  • Maple
    f:= x-> x/sqrt(1-2*x): a:= n-> subs(x=0, (D@@(n+1))(f)(x)):
    seq(a(n), n=0..20); # Zerinvary Lajos, Apr 04 2009
    # second Maple program:
    a:= n-> (n+1)*doublefactorial(2*n-1):
    seq(a(n), n=0..23);  # Alois P. Heinz, May 13 2020
  • Mathematica
    Table[(n+1) (2*n-1)!!, {n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Apr 14 2011 *)
  • PARI
    a(n)=if(n<0, 0, (n+1)*(2*n)!/(2^n*n!))

Formula

E.g.f.: (1-x)/(1-2*x)^(3/2) = d/dx (x/(1-2*x)^(1/2)).
a(n) = uppermost term in the vector (M(T))^n * [1,0,0,0,...], where T = Transpose and M = the production matrix:
1, 2;
1, 2, 3;
1, 2, 3, 4;
1, 2, 3, 4, 5;
...
- Gary W. Adamson, Jul 08 2011
G.f.: A(x) = 1 + 2*x/(G(0) - 2*x) ; G(k) = 1 + k + x*(k+2)*(2*k+1) - x*(k+1)*(k+3)*(2*k+3)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 06 2011
G.f.: U(0)/2 where U(k) = 1 + (2*k+1)/(1 - x/(x + 1/U(k+1))) (continued fraction). - Sergei N. Gladkovskii, Sep 25 2012
From Peter Bala, Nov 07 2016 and May 14 2020: (Start)
a(n) = (n + 1)*(2*n - 1)/n * a(n-1) with a(0) = 1.
a(n) = 2*a(n-1) + (2*n - 3)*(2*n + 1)*a(n-2) with a(0) = 1, a(1) = 2.
(End)
a(n) = A059366(n+1, n) = A059366(n+1, 1). - Petros Hadjicostas, May 13 2020

Extensions

Better description from Wouter Meeussen, Mar 08 2001
More terms from James Sellers, May 01 2000

A079628 Array of coefficients of P(n,x) = det (M(n,x)) where M(n,x) is the n X n matrix m(i,j)=x if i>j m(i,j)=1-x if i<=j.

Original entry on oeis.org

1, 1, -1, 1, -3, 2, 1, -5, 8, -4, 1, -7, 18, -20, 8, 1, -9, 32, -56, 48, -16, 1, -11, 50, -120, 160, -112, 32, 1, -13, 72, -220, 400, -432, 256, -64, 1, -15, 98, -364, 840, -1232, 1120, -576, 128, 1, -17, 128, -560, 1568, -2912, 3584, -2816, 1280, -256, 1, -19, 162, -816, 2688, -6048, 9408, -9984, 6912, -2816, 512, 1
Offset: 0

Views

Author

Benoit Cloitre, Jan 30 2003

Keywords

Comments

Formatted as a triangular array, this is [1, 0, 0, 0, 0, 0, 0, ...] DELTA [ -1, -1, 0, 0, 0, 0, 0, 0, ...] (see construction in A084938). - Philippe Deléham, Aug 09 2005

Examples

			det(M(4,x))=1-7x+18x^2-20x^3+8x^4.
1;
1,-1;
1,-3,2;
1,-5,8,-4;
1,-7,18,-20,8;
1,-9,32,-56,48,-16;
1,-11,50,-120,160,-112,32;
1,-13,72,-220,400,-432,256,-64;
1,-15,98,-364,840,-1232,1120,-576,128;
1,-17,128,-560,1568,-2912,3584,-2816,1280,-256,
		

Crossrefs

Cf. A081277.
Cf. A167580 and A167591. - Johannes W. Meijer, Nov 23 2009

Programs

  • Maple
    A079628 := proc(n,k) local x; expand((-1)^n* (x-1)*(2*x-1)^(n-1)) ;coeftayl(%,x=0,k) ; end proc: # R. J. Mathar, Nov 04 2011

Formula

P(n, x)= (-1)^n*(x-1)*(2*x-1)^(n-1).
G.f.: (1+x*y)/(1+2*x*y-x). - R. J. Mathar, Aug 11 2015

Extensions

Sign added to formula. - R. J. Mathar, Nov 04 2011
Previous Showing 11-12 of 12 results.