A167584
The ED4 array read by antidiagonals.
Original entry on oeis.org
1, 2, 1, 13, 6, 1, 76, 41, 10, 1, 789, 372, 93, 14, 1, 7734, 4077, 1020, 169, 18, 1, 110937, 53106, 13269, 2212, 269, 22, 1, 1528920, 795645, 198990, 33165, 4140, 393, 26, 1, 28018665, 13536360, 3383145, 563850, 70485, 6996, 541, 30, 1
Offset: 1
The ED4 array begins with:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1
2, 6, 10, 14, 18, 22, 26, 30, 34, 38
13, 41, 93, 169, 269, 393, 541, 713, 909, 1129
76, 372, 1020, 2212, 4140, 6996, 10972, 16260, 23052, 31540
789, 4077, 13269, 33165, 70485, 133869, 233877, 382989, 595605, 888045
7734, 53106, 198990, 563850, 1339110, 2812194, 5389566, 9619770, 16216470, 26081490
...
From _Peter Bala_, Nov 06 2016: (Start)
Table extended to nonpositive values of m:
n\m| -4 -3 -2 -1 0
-----------------------------------
0 | 0 0 0 0 0
1 | 1 1 1 1 1
2 | -18 -14 -10 -6 -2
3 | 233 141 73 29 9
4 | -2844 -1428 -620 -228 -60
5 | 39309 17877 7149 2325 525
...
Column 0: (-1)^(n+1)*(2*n - 3)!!*n. See A001193;
Column -1: (-1)^n*(2*n - 5)!!/3!!*n*(7 - 4*n^2);
Column -2: (-1)^n*(2*n - 7)!!/5!!*n(-149 + 120*n^2 - 16*n^4);
Column -3: (-1)^n*(2*n - 9)!!/7!!*n*(6483 - 6076*n^2 + 1232*n^4 - 64*n^6);
Column -4: (-1)^n*(2*n - 11)!!/9!!*n*(-477801 + 489136*n^2 - 120288*n^4 + 9984*n^6 - 256*n^8). (End)
A167590 equals the row sums of the ED4 array read by antidiagonals.
A167591 is a triangle related to the a(n) formulas of the rows of the ED4 array.
A167594 is a triangle related to the GF(z) formulas of the rows of the ED4 array.
Cf.
A002866 (the 2^(n-1)*n! factor).
-
T := proc (n, m) option remember;
if n = 0 then 0
elif n = 1 then 1
else (4*m-2)*T(n-1,m)+(2*n+2*m-5)*(2*n-2*m-1)*T(n-2,m)
end if;
end proc:
#square array read by antidiagonals
seq(seq(T(n-m,m), m = 1..n-1), n = 1..10);
# Peter Bala, Nov 06 2016
-
T[0, k_] := 0; T[1, k_] := 1; T[n_, k_] := T[n, k] = (4*k - 2)*T[n - 1, k] + (2*n + 2*k - 5)*(2*n - 2*k - 1)*T[n - 2, k]; Table[T[n - k, k], {n, 2, 12}, {k, 1, n - 1}] (* G. C. Greubel, Jan 20 2017 *)
A167591
A triangle related to the a(n) formulas of the rows of the ED4 array A167584.
Original entry on oeis.org
1, 4, -2, 12, -8, 9, 32, -16, 120, -60, 80, 0, 952, -768, 525, 192, 160, 5664, -5008, 12396, -5670, 448, 896, 27888, -20672, 162740, -133128, 72765, 1024, 3584, 120064, -46720, 1537216, -1562464, 2557296, -1081080, 2304, 12288, 467712, 76800
Offset: 1
Row 1: a(n) = 1.
Row 2: a(n) = 4*n - 2.
Row 3: a(n) = 12*n^2 - 8*n + 9.
Row 4: a(n) = 32*n^3 - 16*n^2 + 120*n - 60.
Row 5: a(n) = 80*n^4 + 0*n^3 + 952*n^2 - 768*n + 525.
Row 6: a(n) = 192*n^5 + 160*n^4 + 5664*n^3 - 5008*n^2 + 12396*n - 5670.
Row 7: a(n) = 448*n^6 + 896*n^5 + 27888*n^4 - 20672*n^3 + 162740*n^2 - 133128*n + 72765.
Row 8: a(n) = 1024*n^7 + 3584*n^6 + 120064*n^5 - 46720*n^4 + 1537216*n^3 - 1562464*n^2 + 2557296*n - 1081080.
Row 9: a(n) = 2304*n^8 + 12288*n^7 + 467712*n^6 + 76800*n^5 + 11589216*n^4 - 12058368*n^3 + 47963568*n^2 - 38278080*n + 18243225.
Row 10: a(n) = 5120*n^9 + 38400*n^8 + 1686528*n^7 + 1540608*n^6 + 73898880*n^5 - 66179520*n^4 + 631348672*n^3 - 669559008*n^2 + 869709780*n - 344594250.
A001193 equals the first right hand triangle column.
A059366
Triangle T(m,s), m >= 0, 0 <= s <= m, arising in the computation of certain integrals.
Original entry on oeis.org
1, 1, 1, 3, 2, 3, 15, 9, 9, 15, 105, 60, 54, 60, 105, 945, 525, 450, 450, 525, 945, 10395, 5670, 4725, 4500, 4725, 5670, 10395, 135135, 72765, 59535, 55125, 55125, 59535, 72765, 135135, 2027025, 1081080, 873180, 793800, 771750, 793800, 873180
Offset: 0
Triangle T(m,s) (with rows m >= 0 and columns 0 <= s <= m) begins as follows:
1;
1, 1;
3, 2, 3;
15, 9, 9, 15;
105, 60, 54, 60, 105;
945, 525, 450, 450, 525, 945;
...
From _Petros Hadjicostas_, May 13 2020: (Start)
With m = 4, we have
J(4) = Integral_{t = 0..Pi/2} (A^2*cos^2(t) + B^2*sin^2(t))^(-4) dt
= Pi/(2^4*A*B*3!) * Sum_{s=0..3} T(3,s)*A^(-2*s)*B(-6+2*s)
= Pi/(96*A*B) * (15*B^(-6) + 9*A^(-2)*B^(-4) + 9*A^(-4)*B^(-2) + 15*A^(-6)). (End)
- L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 166-167; see a(m,s) (typo in a formula corrected below).
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Louis Comtet, Fonctions génératrices et calcul de certaines intégrales, Publikacije Elektrotechnickog faculteta - Serija Matematika i Fizika, No. 181/196 (1967), 77-87; see p. 85.
- Konrad Jacobs, Das kombinatorische Äquivalenzprinzip und das arcsin-Gesetz von E. Sparre Andersen, in: K. Jacobs (eds), Selecta Mathematica I, Heidelberger Taschenbücher, vol 49, Springer, Berlin, Heidelberg, 1969, pp. 53-81; see Lemma 3.3.
- Konrad Jacobs, Discrete Stochastics, Springer Basel AG, 1992; see Section 2.1.
- Wikipedia, Arcsine distribution.
-
/* as triangle */ [[Binomial(2*s,s)*Binomial(2*n-2*s, n-s)*Factorial(n)/2^n: s in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Jan 09 2017
-
A059366 = proc(m, s) option remember; if s = 0 then (2*m)!/(2^m*m!) else
(2*s-1)*(m-s+1)/(s*(2*m-2*s+1)) * A059366(m, s-1) end if; end proc:
seq(print(seq(A059366(m, s), s = 0..m)), m = 0..10) ; # Peter Bala, Apr 14 2024
-
Table[Binomial[2*s, s]*Binomial[2*n - 2*s, n - s]*n!/2^n, {n, 0, 10}, {s, 0, n}] // Flatten (* G. C. Greubel, Jan 08 2017 *)
-
for(n=0,10, for(s=0,n, print1(binomial(2*s, s)*binomial(2*n - 2*s, n - s)*n!/2^n, ", "))) \\ G. C. Greubel, Jan 08 2017
More terms from Larry Reeves (larryr(AT)acm.org), Feb 08 2001
A002690
a(n) = (n+1) * (2*n)! / n!.
Original entry on oeis.org
1, 4, 36, 480, 8400, 181440, 4656960, 138378240, 4670265600, 176432256000, 7374868300800, 337903056691200, 16838835658444800, 906706535454720000, 52459449551308800000, 3245491278907637760000, 213796737998040637440000, 14940619102451310428160000, 1103945744792235714969600000
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
a002690 n = a245334 (2 * n) n -- Reinhard Zumkeller, Aug 30 2014
-
[(n+1) * Factorial(2*n) /Factorial(n): n in [0..20]]; // Vincenzo Librandi, Sep 05 2011
-
with(combstruct):bin := {B=Union(Z,Prod(B,B))}:
seq (count([B,bin,labeled],size=n+1)*(n+1), n=0..17); # Zerinvary Lajos, Dec 05 2007
A002690 := n -> 2^n*n!*JacobiP(n, -1/2, -n+1, 3):
seq(simplify(A002690(n)), n = 0..18); # Peter Luschny, Jan 22 2025
-
Table[((n+1)(2n)!)/n!,{n,0,20}] (* Harvey P. Dale, Sep 04 2011 *)
-
a(n)=(n+1)*(2*n)!/n!
A167594
A triangle related to the GF(z) formulas of the rows of the ED4 array A167584.
Original entry on oeis.org
1, 2, 2, 9, 2, 13, 60, -12, 68, 76, 525, -300, 774, 132, 789, 5670, -5250, 11820, -3636, 6702, 7734, 72765, -92610, 212415, -143340, 143307, 19086, 110937, 1081080, -1746360, 4286520, -4246200, 4156200, -1204200, 1305000, 1528920
Offset: 1
Row 1: GF(z) = 1/(1-z).
Row 2: GF(z) = (2*z + 2)/(1-z)^2.
Row 3: GF(z) = (9*z^2 + 2*z + 13)/(1-z)^3.
Row 4: GF(z) = (60*z^3 - 12*z^2 + 68*z + 76)/(1-z)^4.
Row 5: GF(z) = (525*z^4 - 300*z^3 + 774*z^2 + 132*z + 789)/(1-z)^5.
Row 6: GF(z) = (5670*z^5 - 5250*z^4 + 11820*z^3 - 3636*z^2 + 6702*z + 7734)/(1-z)^6.
Row 7: GF(z) = (72765*z^6 - 92610*z^5 + 212415*z^4 - 143340*z^3 + 143307*z^2 + 19086*z + 110937)/ (1-z)^7.
Row 8: GF(z) = (1081080*z^7 - 1746360*z^6 + 4286520*z^5 - 4246200*z^4 + 4156200*z^3 - 1204200*z^2 + 1305000*z + 1528920)/(1-z)^8.
Row 9: GF(z) = (18243225*z^8 - 35675640*z^7 + 95176620*z^6 -121723560*z^5 + 132769350*z^4 - 73816200*z^3 + 45017100*z^2 + 4887720*z + 28018665) / (1-z)^9.
Row 10: GF(z) = (344594250*z^9 - 790539750*z^8 + 2299457160*z^7 - 3567314520*z^6 + 4441299660*z^5 - 3398138100*z^4 + 2160066600*z^3 - 550619640*z^2 + 421244730*z + 497895210)/(1-z)^10.
A001193 equals the first left hand column.
A024199 equals the first right hand column.
A305402
A number triangle T(n,k) read by rows for 0<=k<=n, related to the Taylor expansion of f(u, p) = (1/2)*(1+1/(sqrt(1-u^2)))*exp(p*sqrt(1-u^2)).
Original entry on oeis.org
1, 1, -2, 3, -4, 2, 15, -18, 9, -2, 105, -120, 60, -16, 2, 945, -1050, 525, -150, 25, -2, 10395, -11340, 5670, -1680, 315, -36, 2, 135135, -145530, 72765, -22050, 4410, -588, 49, -2, 2027025, -2162160, 1081080, -332640, 69300, -10080, 1008, -64, 2
Offset: 0
The first few terms of the Taylor expansion of f(u; p) are:
f(u, p) = exp(p) * (1 + (1-2*p) * u^2/4 + (3-4*p+2*p^2) * u^4/16 + (15-18*p+9*p^2-2*p^3) * u^6/96 + (105-120*p+60*p^2-16*p^3+2*p^4) * u^8/768 + ... )
The first few rows of the T(n, k) triangle are:
n=0: 1
n=1: 1, -2
n=2: 3, -4, 2
n=3: 15, -18, 9, -2
n=4: 105, -120, 60, -16, 2
n=5: 945, -1050, 525, -150, 25, -2
n=6: 10395, -11340, 5670, -1680, 315, -36, 2
- J. W. Goodman, Introduction to Fourier Optics, 1996.
- A. Papoulis, Systems and Transforms with Applications in Optics, 1968.
- Andrew Howroyd, Rows n=0..50 of triangle, flattened
- M. J. Bastiaans, The Wigner distribution function applied to optical signals and systems, Optics Communications, Vol. 25, nr. 1, pp. 26-30, 1978.
- H. J. Butterweck, General theory of linear, coherent optical data processing systems, Journal of the Optical Society of America, Vol. 67, nr. 1, pp. 60-70, 1977.
- J. W. Meijer, A note on optical diffraction, 1979.
-
[[n le 0 select 1 else (-1)^k*2^(k-n+1)*Factorial(2*n-k-1)*Binomial(n, k)/Factorial(n-1): k in [0..n]]: n in [1..10]]; // G. C. Greubel, Nov 08 2018
-
T := proc(n, k): if n=0 then 1 else (-1)^k*2^(k-n+1)*n*(2*n-k-1)!/(k!*(n-k)!) fi: end: seq(seq(T(n, k), k=0..n), n=0..8);
-
Table[If[n==0 && k==0,1, (-1)^k*2^(k-n+1)*n*(2*n-k-1)!/(k!*(n-k)!)], {n, 0, 10}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 08 2018 *)
-
T(n,k) = {if(n==0, 1, (-1)^k*2^(k-n+1)*n*(2*n-k-1)!/(k!*(n-k)!))}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 08 2018
A108032
Triangle T(n,k), 0<=k<=n, read by rows, defined by : T(0,0) = 1, T(n,k) = 0 if n
Original entry on oeis.org
1, 1, 1, 3, 2, 2, 15, 9, 6, 6, 105, 60, 36, 24, 24, 945, 525, 300, 180, 120, 120, 10395, 5670, 3150, 1800, 1080, 720, 720, 135135, 72765, 39690, 22050, 12600, 7560, 5040, 5040, 2027025, 1081080, 582120, 317520, 176400, 100800, 60480, 40320, 40320
Offset: 0
1;
1, 1;
3, 2, 2;
15, 9, 6, 6;
105, 60, 36, 24, 24; ...
Showing 1-7 of 7 results.
Comments