cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 95 results. Next

A336942 Number of strict chains of divisors in A130091 (numbers with distinct prime multiplicities) starting with the superprimorial A006939(n) and ending with 1.

Original entry on oeis.org

1, 1, 5, 95, 8823, 4952323, 20285515801, 714092378624317
Offset: 0

Views

Author

Gus Wiseman, Aug 14 2020

Keywords

Examples

			The a(0) = 1 through a(2) = 5 chains:
  {1}  {2,1}  {12,1}
              {12,2,1}
              {12,3,1}
              {12,4,1}
              {12,4,2,1}
		

Crossrefs

A076954 can be used instead of A006939 (cf. A307895, A325337).
A336423 and A336571 are not restricted to A006939.
A336941 is the version not restricted by A130091.
A337075 is the version for factorials.
A074206 counts chains of divisors from n to 1.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A253249 counts chains of divisors.
A327498 gives the maximum divisor with distinct prime multiplicities.
A336422 counts divisible pairs of divisors, both in A130091.
A336424 counts factorizations using A130091.

Programs

  • Mathematica
    chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}];
    chnstr[n_]:=If[n==1,1,Sum[chnstr[d],{d,Select[Most[Divisors[n]],UnsameQ@@Last/@FactorInteger[#]&]}]];
    Table[chnstr[chern[n]],{n,0,3}]

Formula

a(n) = A336423(A006939(n)) = A336571(A006939(n)).

A342514 Number of integer partitions of n with distinct first quotients.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 6, 8, 11, 14, 18, 24, 28, 35, 41, 52, 64, 81, 93, 115, 137, 157, 190, 225, 268, 313, 366, 430, 502, 587, 683, 790, 913, 1055, 1217, 1393, 1605, 1830, 2098, 2384, 2722, 3101, 3524, 4005, 4524, 5137, 5812, 6570, 7434, 8360, 9416, 10602, 11881
Offset: 0

Views

Author

Gus Wiseman, Mar 17 2021

Keywords

Comments

Also the number of reversed integer partitions of n with distinct first quotients.
The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).

Examples

			The partition (4,3,3,2,1) has first quotients (3/4,1,2/3,1/2) so is counted under a(13), but it has first differences (-1,0,-1,-1) so is not counted under A325325(13).
The a(1) = 1 through a(9) = 14 partitions:
  (1)  (2)   (3)   (4)    (5)    (6)    (7)     (8)     (9)
       (11)  (21)  (22)   (32)   (33)   (43)    (44)    (54)
                   (31)   (41)   (42)   (52)    (53)    (63)
                   (211)  (221)  (51)   (61)    (62)    (72)
                          (311)  (321)  (322)   (71)    (81)
                                 (411)  (331)   (332)   (432)
                                        (511)   (422)   (441)
                                        (3211)  (431)   (522)
                                                (521)   (531)
                                                (611)   (621)
                                                (3221)  (711)
                                                        (3321)
                                                        (4311)
                                                        (5211)
		

Crossrefs

The version for differences instead of quotients is A325325.
The ordered version is A342529.
The strict case is A342520.
The Heinz numbers of these partitions are A342521.
A000005 counts constant partitions.
A000009 counts strict partitions.
A000041 counts partitions.
A001055 counts factorizations (strict: A045778, ordered: A074206).
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A167865 counts strict chains of divisors > 1 summing to n.
A342096 counts partitions with all adjacent parts x < 2y (strict: A342097).
A342098 counts partitions with all adjacent parts x > 2y.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@Divide@@@Partition[#,2,1]&]],{n,0,30}]

A343662 Irregular triangle read by rows where T(n,k) is the number of strict length k chains of divisors of n, 0 <= k <= Omega(n) + 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 1, 3, 3, 1, 1, 2, 1, 1, 4, 5, 2, 1, 2, 1, 1, 4, 6, 4, 1, 1, 3, 3, 1, 1, 4, 5, 2, 1, 2, 1, 1, 6, 12, 10, 3, 1, 2, 1, 1, 4, 5, 2, 1, 4, 5, 2, 1, 5, 10, 10, 5, 1, 1, 2, 1, 1, 6, 12, 10, 3, 1, 2, 1, 1, 6, 12, 10, 3, 1, 4, 5, 2, 1, 4, 5, 2
Offset: 1

Views

Author

Gus Wiseman, May 01 2021

Keywords

Examples

			Triangle begins:
   1:  1  1
   2:  1  2  1
   3:  1  2  1
   4:  1  3  3  1
   5:  1  2  1
   6:  1  4  5  2
   7:  1  2  1
   8:  1  4  6  4  1
   9:  1  3  3  1
  10:  1  4  5  2
  11:  1  2  1
  12:  1  6 12 10  3
  13:  1  2  1
  14:  1  4  5  2
  15:  1  4  5  2
  16:  1  5 10 10  5  1
For example, row n = 12 counts the following chains:
  ()  (1)   (2/1)   (4/2/1)   (12/4/2/1)
      (2)   (3/1)   (6/2/1)   (12/6/2/1)
      (3)   (4/1)   (6/3/1)   (12/6/3/1)
      (4)   (4/2)   (12/2/1)
      (6)   (6/1)   (12/3/1)
      (12)  (6/2)   (12/4/1)
            (6/3)   (12/4/2)
            (12/1)  (12/6/1)
            (12/2)  (12/6/2)
            (12/3)  (12/6/3)
            (12/4)
            (12/6)
		

Crossrefs

Column k = 1 is A000005.
Row ends are A008480.
Row lengths are A073093.
Column k = 2 is A238952.
The case from n to 1 is A334996 or A251683 (row sums: A074206).
A non-strict version is A334997 (transpose: A077592).
The case starting with n is A337255 (row sums: A067824).
Row sums are A337256 (nonempty: A253249).
A001055 counts factorizations.
A001221 counts distinct prime factors.
A001222 counts prime factors with multiplicity.
A097805 counts compositions by sum and length.
A122651 counts strict chains of divisors summing to n.
A146291 counts divisors of n with k prime factors (with multiplicity).
A163767 counts length n - 1 chains of divisors of n.
A167865 counts strict chains of divisors > 1 summing to n.
A337070 counts strict chains of divisors starting with superprimorials.

Programs

  • Mathematica
    Table[Length[Select[Reverse/@Subsets[Divisors[n],{k}],And@@Divisible@@@Partition[#,2,1]&]],{n,15},{k,0,PrimeOmega[n]+1}]

A345182 a(1) = 1, a(2) = 0; a(n) = Sum_{d|n, d < n} a(d).

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 1, 2, 2, 2, 1, 5, 1, 2, 3, 4, 1, 6, 1, 5, 3, 2, 1, 12, 2, 2, 4, 5, 1, 10, 1, 8, 3, 2, 3, 18, 1, 2, 3, 12, 1, 10, 1, 5, 8, 2, 1, 28, 2, 6, 3, 5, 1, 16, 3, 12, 3, 2, 1, 31, 1, 2, 8, 16, 3, 10, 1, 5, 3, 10, 1, 50, 1, 2, 8, 5, 3, 10, 1, 28, 8, 2, 1, 31, 3, 2, 3, 12, 1, 36
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 10 2021

Keywords

Comments

From Antti Karttunen, Nov 25 2024: (Start)
a(n) is the number of strict chains of divisors from n to 1 that do not end with 2/1. For example, the a(n) such chains for n = 1, 2, 4, 6, 8, 12, 30 are:
1 (none) 4/1 6/1 8/1 12/1 30/1
6/3/1 8/4/1 12/3/1 30/3/1
12/4/1 30/5/1
12/6/1 30/6/1
12/6/3/1 30/10/1
30/15/1
30/6/3/1
30/10/5/1
30/15/3/1
30/15/5/1
leaving 1, 0, 1, 2, 2, 5, 10 chains out of the 1, 1, 2, 3, 4, 8, 13 chains depicted in the illustration of A074206.
Equally, a(n) is the number of strict chains of divisors from n to 1 where n is not followed by n/2 as the second divisor in the chain, which explains nicely the formula a(n) = A074206(n) - A074206(n/2) when n is even.
(End)

Crossrefs

Cf. A022825 (partial sums), A074206, A167865, A320224, A345138, A345141, A378218 (Dirichlet inverse), A378223 (inverse Möbius transform).

Programs

  • Mathematica
    a[1] = 1; a[2] = 0; a[n_] := a[n] = Sum[If[d < n, a[d], 0], {d, Divisors[n]}]; Table[a[n], {n, 1, 90}]
    nmax = 90; A[] = 0; Do[A[x] = x - x^2 + Sum[A[x^k], {k, 2, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest
  • PARI
    memoA345182 = Map();
    A345182(n) = if(n<=2, n%2, my(v); if(mapisdefined(memoA345182,n,&v), v, v = sumdiv(n,d,if(dA345182(d),0)); mapput(memoA345182,n,v); (v))); \\ Antti Karttunen, Nov 22 2024
    
  • PARI
    up_to = 20000;
    A345182list(up_to_n) = { my(v=vector(up_to_n)); v[1] = 1; v[2] = 0; for(n=3,up_to_n,v[n] = sumdiv(n,d,(dA345182list(up_to);
    A345182(n) = v345182[n]; \\ Antti Karttunen, Nov 25 2024

Formula

G.f. A(x) satisfies: A(x) = x - x^2 + A(x^2) + A(x^3) + A(x^4) + ...
a(n) = A074206(n) if n is odd, otherwise a(n) = A074206(n) - A074206(n/2).

A317885 Number of series-reduced free pure achiral multifunctions with one atom and n positions.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 2, 3, 4, 7, 9, 14, 21, 32, 45, 69, 103, 153, 224, 338, 500, 746, 1107, 1645, 2447, 3652, 5413, 8052, 11993, 17834, 26500, 39447, 58655, 87240, 129772, 193001, 287034, 427014, 635048, 944501, 1404910, 2089633, 3107864, 4622670, 6875533
Offset: 1

Views

Author

Gus Wiseman, Aug 09 2018

Keywords

Comments

A series-reduced free pure achiral multifunction (SRAM) is either (case 1) the leaf symbol "o", or (case 2) a nonempty and non-unitary expression of the form h[g, ..., g] where h and g are SRAMs. The number of positions in a SRAM is the number of brackets [...] plus the number of o's.

Examples

			The a(10) = 7 SRAMs:
  o[o[o,o],o[o,o]]
  o[o,o][o,o][o,o]
  o[o,o][o,o,o,o,o]
  o[o,o,o][o,o,o,o]
  o[o,o,o,o][o,o,o]
  o[o,o,o,o,o][o,o]
  o[o,o,o,o,o,o,o,o]
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=If[n==1,1,Sum[a[k]*Sum[a[d],{d,Most[Divisors[n-k-1]]}],{k,n-2}]];
    Array[a,12]
  • PARI
    seq(n)={my(p=O(x)); for(n=1, n, p = x + p*x*sum(k=2, n-2, subst(p + O(x^(n\k+1)), x, x^k)) + O(x*x^n)); Vec(p)} \\ Andrew Howroyd, Aug 19 2018
    
  • PARI
    seq(n)={my(v=vector(n)); v[1]=1; for(n=2, #v, v[n]=sum(i=1, n-2, v[i]*sumdiv(n-i-1, d, if(dAndrew Howroyd, Aug 19 2018

Formula

a(1) = 1; a(n > 1) = Sum_{0 < k < n - 1} a(k) * Sum_{d|(n - k - 1), d < n - k - 1} a(d).

Extensions

Terms a(17) and beyond from Andrew Howroyd, Aug 19 2018

A320225 a(1) = 1; a(n > 1) = Sum_{k = 1..n} Sum_{d|k, d < k} a(d).

Original entry on oeis.org

1, 1, 2, 4, 5, 9, 10, 16, 19, 26, 27, 44, 45, 57, 65, 87, 88, 120, 121, 158, 171, 200, 201, 278, 284, 331, 353, 426, 427, 536, 537, 646, 676, 766, 782, 982, 983, 1106, 1154, 1365, 1366, 1617, 1618, 1851, 1943, 2146, 2147, 2589, 2600, 2917, 3008, 3390, 3391
Offset: 1

Views

Author

Gus Wiseman, Oct 07 2018

Keywords

Crossrefs

Programs

  • Mathematica
    sau[n_]:=If[n==1,1,Sum[sau[d],{k,n},{d,Most[Divisors[k]]}]];
    Table[sau[n],{n,30}]
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A320225(n): return 1 if n == 1 else sum(A320225(d)*(n//d-1) for d in range(1,n)) # Chai Wah Wu, Jun 08 2022

Formula

a(1) = 1; a(n > 1) = Sum_{d = 1..n-1} a(d) * floor(n/d-1).
G.f. A(x) satisfies A(x) = x + (1/(1 - x)) * Sum_{k>=2} A(x^k). - Ilya Gutkovskiy, Sep 06 2019

A331967 Matula-Goebel numbers of lone-child-avoiding achiral rooted trees.

Original entry on oeis.org

1, 4, 8, 16, 32, 49, 64, 128, 256, 343, 361, 512, 1024, 2048, 2401, 2809, 4096, 6859, 8192, 16384, 16807, 17161, 32768, 51529, 65536, 96721, 117649, 130321, 131072, 148877, 262144, 516961, 524288, 823543, 1048576, 2097152, 2248091, 2476099, 2621161, 4194304
Offset: 1

Views

Author

Gus Wiseman, Feb 06 2020

Keywords

Comments

Lone-child-avoiding means there are no unary branchings.
In an achiral rooted tree, the branches of any given vertex are all equal.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
Consists of one and all numbers of the form prime(j)^k where k > 1 and j is already in the sequence.

Examples

			The sequence of all lone-child-avoiding achiral rooted trees together with their Matula-Goebel numbers begins:
      1: o
      4: (oo)
      8: (ooo)
     16: (oooo)
     32: (ooooo)
     49: ((oo)(oo))
     64: (oooooo)
    128: (ooooooo)
    256: (oooooooo)
    343: ((oo)(oo)(oo))
    361: ((ooo)(ooo))
    512: (ooooooooo)
   1024: (oooooooooo)
   2048: (ooooooooooo)
   2401: ((oo)(oo)(oo)(oo))
   2809: ((oooo)(oooo))
   4096: (oooooooooooo)
   6859: ((ooo)(ooo)(ooo))
   8192: (ooooooooooooo)
  16384: (oooooooooooooo)
  16807: ((oo)(oo)(oo)(oo)(oo))
  17161: ((ooooo)(ooooo))
  32768: (ooooooooooooooo)
  51529: (((oo)(oo))((oo)(oo)))
  65536: (oooooooooooooooo)
  96721: ((oooooo)(oooooo))
		

Crossrefs

A subset of A025475 (nonprime prime powers).
The enumeration of these trees by vertices is A167865.
Not requiring lone-child-avoidance gives A214577.
The semi-achiral version is A320269.
The semi-lone-child-avoiding version is A331992.
Achiral rooted trees are counted by A003238.
MG-numbers of planted achiral rooted trees are A280996.
MG-numbers of lone-child-avoiding rooted trees are A291636.

Programs

  • Mathematica
    msQ[n_]:=n==1||!PrimeQ[n]&&PrimePowerQ[n]&&And@@msQ/@PrimePi/@First/@FactorInteger[n];
    Select[Range[10000],msQ]

Formula

Intersection of A214577 (achiral) and A291636 (lone-child-avoiding).

A342492 Number of compositions of n with weakly increasing first quotients.

Original entry on oeis.org

1, 1, 2, 4, 7, 11, 17, 26, 37, 52, 73, 95, 125, 163, 208, 261, 330, 407, 498, 607, 734, 881, 1056, 1250, 1480, 1738, 2029, 2359, 2742, 3160, 3635, 4169, 4760, 5414, 6151, 6957, 7861, 8858, 9952, 11148, 12483, 13934, 15526, 17267, 19173, 21252, 23535, 25991
Offset: 0

Views

Author

Gus Wiseman, Mar 16 2021

Keywords

Comments

Also called log-concave-up compositions.
The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).

Examples

			The composition (4,2,1,2,3) has first quotients (1/2,1/2,2,3/2) so is not counted under a(12), even though the first differences (-2,-1,1,1) are weakly increasing.
The a(1) = 1 through a(6) = 17 compositions:
  (1)  (2)    (3)      (4)        (5)          (6)
       (1,1)  (1,2)    (1,3)      (1,4)        (1,5)
              (2,1)    (2,2)      (2,3)        (2,4)
              (1,1,1)  (3,1)      (3,2)        (3,3)
                       (1,1,2)    (4,1)        (4,2)
                       (2,1,1)    (1,1,3)      (5,1)
                       (1,1,1,1)  (2,1,2)      (1,1,4)
                                  (3,1,1)      (2,1,3)
                                  (1,1,1,2)    (2,2,2)
                                  (2,1,1,1)    (3,1,2)
                                  (1,1,1,1,1)  (4,1,1)
                                               (1,1,1,3)
                                               (2,1,1,2)
                                               (3,1,1,1)
                                               (1,1,1,1,2)
                                               (2,1,1,1,1)
                                               (1,1,1,1,1,1)
		

Crossrefs

The weakly decreasing version is A069916.
The version for differences instead of quotients is A325546.
The strictly increasing version is A342493.
The unordered version is A342497, ranked by A342523.
The strict unordered version is A342516.
A000005 counts constant compositions.
A000009 counts strictly increasing (or strictly decreasing) compositions.
A000041 counts weakly increasing (or weakly decreasing) compositions.
A000929 counts partitions with all adjacent parts x >= 2y.
A001055 counts factorizations.
A002843 counts compositions with all adjacent parts x <= 2y.
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A074206 counts ordered factorizations.
A167865 counts strict chains of divisors > 1 summing to n.

Programs

  • Maple
    b:= proc(n, q, l) option remember; `if`(n=0, 1, add(
         `if`(q=0 or q>=l/j, b(n-j, l/j, j), 0), j=1..n))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..50);  # Alois P. Heinz, Mar 25 2021
  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],LessEqual@@Divide@@@Reverse/@Partition[#,2,1]&]],{n,0,15}]
    (* Second program: *)
    b[n_, q_, l_] := b[n, q, l] = If[n == 0, 1, Sum[
         If[q == 0 || q >= l/j, b[n - j, l/j, j], 0], {j, 1, n}]];
    a[n_] := b[n, 0, 0];
    a /@ Range[0, 50] (* Jean-François Alcover, May 19 2021, after Alois P. Heinz *)

Extensions

a(21)-a(47) from Alois P. Heinz, Mar 25 2021

A342493 Number of compositions of n with strictly increasing first quotients.

Original entry on oeis.org

1, 1, 2, 3, 6, 8, 11, 16, 22, 28, 39, 49, 61, 77, 93, 114, 140, 169, 198, 233, 276, 321, 381, 439, 509, 591, 678, 774, 883, 1007, 1147, 1300, 1465, 1641, 1845, 2068, 2317, 2590, 2881, 3193, 3549, 3928, 4341, 4793, 5282, 5813, 6401, 7027, 7699, 8432, 9221, 10076
Offset: 0

Views

Author

Gus Wiseman, Mar 16 2021

Keywords

Comments

The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).

Examples

			The composition (3,1,1,2) has first quotients (1/3,1,2) so is counted under a(7).
The a(1) = 1 through a(7) = 16 compositions:
  (1)  (2)    (3)    (4)      (5)      (6)        (7)
       (1,1)  (1,2)  (1,3)    (1,4)    (1,5)      (1,6)
              (2,1)  (2,2)    (2,3)    (2,4)      (2,5)
                     (3,1)    (3,2)    (3,3)      (3,4)
                     (1,1,2)  (4,1)    (4,2)      (4,3)
                     (2,1,1)  (1,1,3)  (5,1)      (5,2)
                              (2,1,2)  (1,1,4)    (6,1)
                              (3,1,1)  (2,1,3)    (1,1,5)
                                       (3,1,2)    (2,1,4)
                                       (4,1,1)    (2,2,3)
                                       (2,1,1,2)  (3,1,3)
                                                  (3,2,2)
                                                  (4,1,2)
                                                  (5,1,1)
                                                  (2,1,1,3)
                                                  (3,1,1,2)
		

Crossrefs

The version for differences instead of quotients is A325547.
The weakly increasing version is A342492.
The strictly decreasing version is A342494.
The unordered version is A342498, ranked by A342524.
The strict unordered version is A342517.
A000005 counts constant compositions.
A000009 counts strictly increasing (or strictly decreasing) compositions.
A000041 counts weakly increasing (or weakly decreasing) compositions.
A001055 counts factorizations.
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A074206 counts ordered factorizations.
A167865 counts strict chains of divisors > 1 summing to n.
A274199 counts compositions with all adjacent parts x < 2y.

Programs

  • Maple
    b:= proc(n, q, l) option remember; `if`(n=0, 1, add(
         `if`(q=0 or q>l/j, b(n-j, l/j, j), 0), j=1..n))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..55);  # Alois P. Heinz, Mar 25 2021
  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Less@@Divide@@@Reverse/@Partition[#,2,1]&]],{n,0,15}]
    (* Second program: *)
    b[n_, q_, l_] := b[n, q, l] = If[n == 0, 1, Sum[
         If[q == 0 || q > l/j, b[n - j, l/j, j], 0], {j, 1, n}]];
    a[n_] := b[n, 0, 0];
    a /@ Range[0, 55] (* Jean-François Alcover, May 19 2021, after Alois P. Heinz *)

Extensions

a(21)-a(51) from Alois P. Heinz, Mar 18 2021

A342520 Number of strict integer partitions of n with distinct first quotients.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 4, 6, 8, 10, 12, 13, 16, 20, 25, 30, 37, 42, 50, 57, 65, 80, 93, 108, 127, 147, 170, 198, 225, 258, 297, 340, 385, 448, 499, 566, 647, 737, 832, 937, 1064, 1186, 1348, 1522, 1701, 1916, 2157, 2402, 2697, 3013, 3355, 3742, 4190, 4656, 5191
Offset: 0

Views

Author

Gus Wiseman, Mar 20 2021

Keywords

Comments

Also the number of reversed strict integer partitions of n with distinct first quotients.
The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).

Examples

			The strict partition (12,10,5,2,1) has first quotients (5/6,1/2,2/5,1/2) so is not counted under a(30), even though the first differences (-2,-5,-3,-1) are distinct.
The a(1) = 1 through a(13) = 16 partitions (A..D = 10..13):
  1   2   3    4    5    6     7    8     9     A      B      C     D
          21   31   32   42    43   53    54    64     65     75    76
                    41   51    52   62    63    73     74     84    85
                         321   61   71    72    82     83     93    94
                                    431   81    91     92     A2    A3
                                    521   432   532    A1     B1    B2
                                          531   541    542    543   C1
                                          621   631    632    642   643
                                                721    641    651   652
                                                4321   731    732   742
                                                       821    741   751
                                                       5321   831   832
                                                              921   841
                                                                    A21
                                                                    5431
                                                                    7321
		

Crossrefs

The version for differences instead of quotients is A320347.
The non-strict version is A342514 (ranking: A342521).
The equal instead of distinct version is A342515.
The non-strict ordered version is A342529.
The version for strict divisor chains is A342530.
A000041 counts partitions (strict: A000009).
A001055 counts factorizations (strict: A045778, ordered: A074206).
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A167865 counts strict chains of divisors > 1 summing to n.
A342086 counts strict chains of divisors with strictly increasing quotients.
A342098 counts (strict) partitions with all adjacent parts x > 2y.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&UnsameQ@@Divide@@@Partition[#,2,1]&]],{n,0,30}]
Previous Showing 51-60 of 95 results. Next