A383985
Series expansion of the exponential generating function LambertW(1-exp(x)), see A000169.
Original entry on oeis.org
0, 1, -1, 4, -23, 181, -1812, 22037, -315569, 5201602, -97009833, 2019669961, -46432870222, 1168383075471, -31939474693297, 942565598033196, -29866348653695203, 1011335905644178273, -36446897413531401020, 1392821757824071815641, -56259101478392975833333
Offset: 0
Cf.
A002050,
A006531,
A084099,
A101851,
A114285,
A177885,
A225883,
A383986,
A383987,
A383988,
A383989.
Composition of
A000169 with signs and 1-exp(x).
-
nn = 20; f[x_] := -Sum[k^(k - 1)*(1 - Exp[x])^k/k!, {k, nn}];
Range[0, nn]! * CoefficientList[Series[f[x], {x, 0, nn}], x]
A383990
Series expansion of the exponential generating function exp(-dend(-x))-1 where dend(x) = (1 - sqrt(1+4*x)) / (2*x) + 1 (given by A000108).
Original entry on oeis.org
0, 1, -3, 19, -191, 2661, -47579, 1040047, -26888511, 802727209, -27178685459, 1029077910411, -43086906080063, 1976633329627789, -98597207392040811, 5313105048925173991, -307587436319162110079, 19038773384213189214417, -1254686724727364725716131
Offset: 0
Cf.
A003725,
A006531,
A097388,
A111884,
A112242,
A177885,
A318215,
A383991,
A383992,
A383993,
A383994,
A383995. Composition of exp(x)-1 with -
A000108(-x).
A230284
Denominators to Dirichlet inverse of Euler totient based version of series expansion for x/LambertW(x).
Original entry on oeis.org
1, 1, 2, 3, 8, 15, 144, 35, 5760, 315, 5600, 693, 43545600, 1001, 6706022400, 6435, 14014, 109395, 376610217984000, 46189, 128047474114560000, 323323, 2540395, 2028117, 26976017466662584320000, 96577, 3241475864250624, 35102025, 2126818694000, 5386025
Offset: 1
Similar to but strictly different from
A264235.
-
Clear[nn, n, k, s, x]; nn = 22; Denominator[CoefficientList[1 + Integrate[1 + Expand[Sum[Exp[Limit[Zeta[s]*Sum[(If[n == 1, 0, Table[DivisorSum[m, # MoebiusMu[#] &], {m, nn}][[GCD[n, k]]]])/(k)^(s - 1), {k, 1, n}], s -> 1]]*(-x)^n, {n, 1, nn}]], x], x]]
A230283
Numerators to Dirichlet inverse of Euler totient based version of series expansion for x/LambertW(x).
Original entry on oeis.org
1, 1, -1, 2, -9, 8, -625, 2, -117649, 128, -6561, 8, -25937424601, 18, -23298085122481, 16, -9, 32768, -48661191875666868481, 400, -104127350297911241532841, 648, -81, 256, -907846434775996175406740561329, 490, -59604644775390625, 1024, -2541865828329, 1296
Offset: 1
-
Clear[nn, n, k, s, x]; nn = 22; Numerator[CoefficientList[1 + Integrate[1 + Expand[Sum[Exp[Limit[Zeta[s]*Sum[(If[n == 1, 0, Table[DivisorSum[m, # MoebiusMu[#] &], {m, nn}][[GCD[n, k]]]])/(k)^(s - 1), {k, 1, n}], s -> 1]]*(-x)^n, {n, 1, nn}]], x], x]]
A274377
E.g.f. satisfies: A(x)^A(x) = exp(2*x) * A(-x)^A(-x).
Original entry on oeis.org
1, 1, 0, 1, 0, 16, 0, 736, 0, 67096, 0, 10163176, 0, 2306198896, 0, 732199108096, 0, 309860700130816, 0, 168568765338224896, 0, 114619705107961862656, 0, 95251358122177791486976, 0, 94984793274454431691503616, 0, 111939507886837612683516276736, 0, 153907136552991217284274400567296, 0, 244164979570216285201628515234840576, 0, 442692827509235885935744380253757341696, 0, 909667081143908558901949811564629988048896
Offset: 0
E.g.f.: A(x) = 1 + x + x^3/3! + 16*x^5/5! + 736*x^7/7! + 67096*x^9/9! + 10163176*x^11/11! + 2306198896*x^13/13! + 732199108096*x^15/15! + 309860700130816*x^17/17! + 168568765338224896*x^19/19! +...
such that A(x)^A(x) / A(-x)^A(-x) = exp(2*x).
RELATED SERIES.
A(x)^A(x) = 1 + x + 2*x^2/2! + 4*x^3/3! + 16*x^4/4! + 56*x^5/5! + 426*x^6/6! + 2262*x^7/7! + 26944*x^8/8! + 191536*x^9/9! + 3126160*x^10/10! +...+ A275764(n)*x^n/n! +...
Series_Reversion(A(x) - 1) = x - x^3/6 - x^5/20 - x^7/42 - x^9/72 - x^11/110 - x^13/156 - x^15/210 - x^17/272 +...+ -x^(2*n+1)/(2*n*(2*n+1)) +...
Also,
Series_Reversion(A(x) - 1) = (G(x) - G(-x))/2, where G(x) = (1+x)*log(1+x) = Series_Reversion(x/LambertW(x) - 1), and begins:
G(x) = x + x^2/2 - x^3/6 + x^4/12 - x^5/20 + x^6/30 - x^7/42 + x^8/56 - x^9/72 + x^10/90 - x^11/110 + x^12/132 +...+ (-x)^n/(n*(n-1)) +...
GENERATING METHOD.
Start with a(0)=1, a(1)=1, and set a(2*n)=0 for n>0, then use the following criterion to determine the odd-indexed terms.
Given partial sum A(x,2*n) = Sum_{k=0..2*n} a(k)*x^k/k!, and sufficiently large N, the odd-indexed term a(2*n+1) satisfies:
if t > a(2*n+1)/(2*n+1)!, then
t > [x^(2*n+1)] ( A(x,2*n) + t*x^(2*n+1) )^(1-1/N)
else if t <= a(2*n+1)/(2*n+1)! , then
t < [x^(2*n+1)] ( A(x,2*n) + t*x^(2*n+1) )^(1-1/N);
this criterion defines each term of this sequence for n>1.
Using the same method as above, but without setting even-indexed terms to zero, generates x/LambertW(x), e.g.f. of A177885.
RELATED SERIES.
log(A(x)) = x - x^2/2! + 3*x^3/3! - 10*x^4/4! + 60*x^5/5! - 346*x^6/6! + 3108*x^7/7! - 25600*x^8/8! + 306120*x^9/9! - 3283696*x^10/10! + 49021368*x^11/11! - 648526000*x^12/12! + 11606584080*x^13/13! - 182697457216*x^14/14! +...
-
{a(n) = my(A = 1 + serreverse(x - sum(m=1,n\2+1, x^(2*m+1)/(2*m*(2*m+1)) ) +x^2*O(x^n) ) ); n!*polcoeff(A,n)}
for(n=0,40,print1(a(n),", "))
-
/* Generating method (using sufficiently large N and precision) */
\p100
{a(n) = my(N=10^(3*n), A=[1,1]); for(i=0,n\2, A=concat(A,[0,0]); A[#A] = round( (#A-1)!*polcoeff( N*1.* Ser(A)^(1-1/N), #A-1) )/(#A-1)! ); n!*A[n+1]}
for(n=0,40,print1(a(n),", "))
A362569
E.g.f. satisfies A(x) = exp(x/A(x)^(x^2)).
Original entry on oeis.org
1, 1, 1, 1, -23, -119, -359, 6721, 78961, 450577, -7867439, -160506719, -1421049959, 23995634521, 745945175977, 9197488067041, -152057966904479, -6667968305775839, -107047941299543519, 1740437689443523777, 102311231044267813321, 2043217889363061489961
Offset: 0
A305787
Inverse Euler transform of (-n)^n.
Original entry on oeis.org
-1, 4, -23, 223, -2800, 42599, -763220, 15734388, -366715248, 9533820200, -273549419552, 8586984241870, -292755986184548, 10772849584162694, -425587711650564816, 17966217346985801150, -807152054953801845760, 38451365602113718874568, -1936082850634342992601636
Offset: 1
(1-x) * (1-x^2)^(-4) * (1-x^3)^23 * (1-x^4)^(-223) * ... = 1 - x + 4*x^2 - 27*x^3 + 256*x^4 - ... .
A326501
a(n) = Sum_{k=0..n} (-k)^k.
Original entry on oeis.org
1, 0, 4, -23, 233, -2892, 43764, -779779, 15997437, -371423052, 9628576948, -275683093663, 8640417354593, -294234689237660, 10817772136320356, -427076118244539019, 18019667955465012597, -809220593930871751580, 38537187481365665823844
Offset: 0
-
a:= proc(n) option remember; `if`(n<0, 0, (-n)^n+a(n-1)) end:
seq(a(n), n=0..23); # Alois P. Heinz, Sep 12 2019
-
RecurrenceTable[{a[0] == 1, a[n] == a[n-1] + (-n)^n}, a, {n, 0, 23}] (* Jean-François Alcover, Nov 27 2020 *)
-
{a(n) = sum(k=0, n, (-k)^k)}
-
from itertools import accumulate, count, islice
def A326501_gen(): # generator of terms
yield from accumulate((-k)**k for k in count(0))
A326501_list = list(islice(A326501_gen(),10)) # Chai Wah Wu, Jun 18 2022
A362568
E.g.f. satisfies A(x) = exp(x/A(x)^x).
Original entry on oeis.org
1, 1, 1, -5, -23, 121, 1321, -7349, -148175, 853777, 27840241, -163354949, -7934320679, 46820981065, 3203091569497, -18833438286389, -1742847946697759, 10137524365568161, 1230956201929018465, -7042544858204663813, -1095864481054115534519
Offset: 0
A340473
a(n) = n! [x^n] W(-W(x))/(-W(x)), where W(x) is the Lambert W function.
Original entry on oeis.org
1, 1, 1, 7, 13, 321, 31, 42673, -214983, 12251809, -156239909, 6366130761, -135725103227, 5265915854785, -155145910919817, 6318044844152161, -232403136941014799, 10299509100942804033, -446889500139353805773, 21789892230658085847673, -1078684347590588362463619
Offset: 0
-
W := x -> LambertW(x): gf := W(-W(x))/(-W(x)):
ser := series(gf, x, 24): seq(n!*coeff(ser, x, n), n=0..20);
-
gf := -ProductLog[-ProductLog[x]]/ProductLog[x];
Range[0, 20]! CoefficientList[Series[gf, {x, 0, 20}], x]
-
my(x='x+O('x^25)); Vec(serlaplace(lambertw(-lambertw(x))/(-lambertw(x)))) \\ Michel Marcus, Jan 09 2021
Comments