cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A383985 Series expansion of the exponential generating function LambertW(1-exp(x)), see A000169.

Original entry on oeis.org

0, 1, -1, 4, -23, 181, -1812, 22037, -315569, 5201602, -97009833, 2019669961, -46432870222, 1168383075471, -31939474693297, 942565598033196, -29866348653695203, 1011335905644178273, -36446897413531401020, 1392821757824071815641, -56259101478392975833333
Offset: 0

Views

Author

Michael De Vlieger, May 16 2025

Keywords

Crossrefs

Composition of A000169 with signs and 1-exp(x).

Programs

  • Mathematica
    nn = 20; f[x_] := -Sum[k^(k - 1)*(1 - Exp[x])^k/k!, {k, nn}];
    Range[0, nn]! * CoefficientList[Series[f[x], {x, 0, nn}], x]

A383990 Series expansion of the exponential generating function exp(-dend(-x))-1 where dend(x) = (1 - sqrt(1+4*x)) / (2*x) + 1 (given by A000108).

Original entry on oeis.org

0, 1, -3, 19, -191, 2661, -47579, 1040047, -26888511, 802727209, -27178685459, 1029077910411, -43086906080063, 1976633329627789, -98597207392040811, 5313105048925173991, -307587436319162110079, 19038773384213189214417, -1254686724727364725716131
Offset: 0

Views

Author

Michael De Vlieger, May 16 2025

Keywords

Comments

The series -dend(-x) is the inverse for the substitution of the series dias(x), given by the suspension of the Koszul dual of dias. - Bérénice Delcroix-Oger, May 28 2025

Crossrefs

Cf. A003725, A006531, A097388, A111884, A112242, A177885, A318215, A383991, A383992, A383993, A383994, A383995. Composition of exp(x)-1 with -A000108(-x).

A230284 Denominators to Dirichlet inverse of Euler totient based version of series expansion for x/LambertW(x).

Original entry on oeis.org

1, 1, 2, 3, 8, 15, 144, 35, 5760, 315, 5600, 693, 43545600, 1001, 6706022400, 6435, 14014, 109395, 376610217984000, 46189, 128047474114560000, 323323, 2540395, 2028117, 26976017466662584320000, 96577, 3241475864250624, 35102025, 2126818694000, 5386025
Offset: 1

Views

Author

Mats Granvik, Oct 15 2013

Keywords

Crossrefs

Cf. A191898, A177885, A230283 (numerators).
Similar to but strictly different from A264235.

Programs

  • Mathematica
    Clear[nn, n, k, s, x]; nn = 22; Denominator[CoefficientList[1 + Integrate[1 + Expand[Sum[Exp[Limit[Zeta[s]*Sum[(If[n == 1, 0, Table[DivisorSum[m, # MoebiusMu[#] &], {m, nn}][[GCD[n, k]]]])/(k)^(s - 1), {k, 1, n}], s -> 1]]*(-x)^n, {n, 1, nn}]], x], x]]

A230283 Numerators to Dirichlet inverse of Euler totient based version of series expansion for x/LambertW(x).

Original entry on oeis.org

1, 1, -1, 2, -9, 8, -625, 2, -117649, 128, -6561, 8, -25937424601, 18, -23298085122481, 16, -9, 32768, -48661191875666868481, 400, -104127350297911241532841, 648, -81, 256, -907846434775996175406740561329, 490, -59604644775390625, 1024, -2541865828329, 1296
Offset: 1

Views

Author

Mats Granvik, Oct 15 2013

Keywords

Comments

The coefficients of the series expansion of x/Lambert(x) expanded at 0 can be seen as exponentiated numerators in convergents of zeta function limits of truncated Dirichlet series for logarithms. Those numerators are defined by simple recurrences. Letting those recurrences run in cross directions to each other, one get the Dirichlet inverse of the Euler totient in a greatest common divisor matrix, and the von Mangoldt function as convergents of Dirichlet series. Since x/LambertW(x) is good at approximately describing the nontrivial Riemann zeta zeros and since the Riemann zeta zeros are the frequencies that build up the von Mangoldt function, this prime number or von Mangoldt function version of the x/LambertW(x) is motivated.

Crossrefs

Cf. A191898, A177885, A230284 (denominators).

Programs

  • Mathematica
    Clear[nn, n, k, s, x]; nn = 22; Numerator[CoefficientList[1 + Integrate[1 + Expand[Sum[Exp[Limit[Zeta[s]*Sum[(If[n == 1, 0, Table[DivisorSum[m, # MoebiusMu[#] &], {m, nn}][[GCD[n, k]]]])/(k)^(s - 1), {k, 1, n}], s -> 1]]*(-x)^n, {n, 1, nn}]], x], x]]

A274377 E.g.f. satisfies: A(x)^A(x) = exp(2*x) * A(-x)^A(-x).

Original entry on oeis.org

1, 1, 0, 1, 0, 16, 0, 736, 0, 67096, 0, 10163176, 0, 2306198896, 0, 732199108096, 0, 309860700130816, 0, 168568765338224896, 0, 114619705107961862656, 0, 95251358122177791486976, 0, 94984793274454431691503616, 0, 111939507886837612683516276736, 0, 153907136552991217284274400567296, 0, 244164979570216285201628515234840576, 0, 442692827509235885935744380253757341696, 0, 909667081143908558901949811564629988048896
Offset: 0

Views

Author

Paul D. Hanna, Aug 23 2016

Keywords

Comments

a(2*n+1) = 6 (mod 10) for n>1 (conjecture).

Examples

			E.g.f.: A(x) = 1 + x + x^3/3! + 16*x^5/5! + 736*x^7/7! + 67096*x^9/9! + 10163176*x^11/11! + 2306198896*x^13/13! + 732199108096*x^15/15! + 309860700130816*x^17/17! + 168568765338224896*x^19/19! +...
such that A(x)^A(x) / A(-x)^A(-x) = exp(2*x).
RELATED SERIES.
A(x)^A(x) = 1 + x + 2*x^2/2! + 4*x^3/3! + 16*x^4/4! + 56*x^5/5! + 426*x^6/6! + 2262*x^7/7! + 26944*x^8/8! + 191536*x^9/9! + 3126160*x^10/10! +...+ A275764(n)*x^n/n! +...
Series_Reversion(A(x) - 1) = x - x^3/6 - x^5/20 - x^7/42 - x^9/72 - x^11/110 - x^13/156 - x^15/210 - x^17/272 +...+ -x^(2*n+1)/(2*n*(2*n+1)) +...
Also,
Series_Reversion(A(x) - 1) = (G(x) - G(-x))/2, where G(x) = (1+x)*log(1+x) = Series_Reversion(x/LambertW(x) - 1), and begins:
G(x) = x + x^2/2 - x^3/6 + x^4/12 - x^5/20 + x^6/30 - x^7/42 + x^8/56 - x^9/72 + x^10/90 - x^11/110 + x^12/132 +...+ (-x)^n/(n*(n-1)) +...
GENERATING METHOD.
Start with a(0)=1, a(1)=1, and set a(2*n)=0 for n>0, then use the following criterion to determine the odd-indexed terms.
Given partial sum A(x,2*n) = Sum_{k=0..2*n} a(k)*x^k/k!, and sufficiently large N, the odd-indexed term a(2*n+1) satisfies:
if t > a(2*n+1)/(2*n+1)!, then
t > [x^(2*n+1)] ( A(x,2*n) +  t*x^(2*n+1) )^(1-1/N)
else if t <= a(2*n+1)/(2*n+1)! , then
t < [x^(2*n+1)] ( A(x,2*n) + t*x^(2*n+1) )^(1-1/N);
this criterion defines each term of this sequence for n>1.
Using the same method as above, but without setting even-indexed terms to zero, generates x/LambertW(x), e.g.f. of A177885.
RELATED SERIES.
log(A(x)) = x - x^2/2! + 3*x^3/3! - 10*x^4/4! + 60*x^5/5! - 346*x^6/6! + 3108*x^7/7! - 25600*x^8/8! + 306120*x^9/9! - 3283696*x^10/10! + 49021368*x^11/11! - 648526000*x^12/12! + 11606584080*x^13/13! - 182697457216*x^14/14! +...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A = 1 + serreverse(x - sum(m=1,n\2+1, x^(2*m+1)/(2*m*(2*m+1)) ) +x^2*O(x^n) ) ); n!*polcoeff(A,n)}
    for(n=0,40,print1(a(n),", "))
    
  • PARI
    /* Generating method (using sufficiently large N and precision) */
    \p100
    {a(n) = my(N=10^(3*n), A=[1,1]); for(i=0,n\2, A=concat(A,[0,0]); A[#A] = round( (#A-1)!*polcoeff( N*1.* Ser(A)^(1-1/N), #A-1) )/(#A-1)! ); n!*A[n+1]}
    for(n=0,40,print1(a(n),", "))

Formula

E.g.f.: 1 + Series_Reversion( log( sqrt( (1+x)^(1+x) / (1-x)^(1-x) ) ) ).
E.g.f.: 1 + Series_Reversion( (G(x) - G(-x))/2 ), where G(x) = Series_Reversion(x/LambertW(x) - 1) = (1+x)*log(1+x).
E.g.f.: 1 + Series_Reversion( x - Sum_{n>=1} x^(2*n+1)/(2*n*(2*n+1)) ).
If n is odd then a(n) ~ c * d^n * n^(n-1) / exp(n), where d = 1.37441749603820461..., c = 0.6508250221842049... . - Vaclav Kotesovec, Sep 22 2016

A362569 E.g.f. satisfies A(x) = exp(x/A(x)^(x^2)).

Original entry on oeis.org

1, 1, 1, 1, -23, -119, -359, 6721, 78961, 450577, -7867439, -160506719, -1421049959, 23995634521, 745945175977, 9197488067041, -152057966904479, -6667968305775839, -107047941299543519, 1740437689443523777, 102311231044267813321, 2043217889363061489961
Offset: 0

Views

Author

Seiichi Manyama, Apr 25 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x*exp(-lambertw(x^3)))))

Formula

E.g.f.: (x^3 / LambertW(x^3))^(1/x^2) = exp(LambertW(x^3) / x^2) = exp(x * exp(-LambertW(x^3))).
a(n) = n! * Sum_{k=0..floor(n/3)} (-1)^k * (n-2*k)^k * binomial(n-2*k-1,k)/(n-2*k)!.
E.g.f.: Sum_{k>=0} (-k*x^2 + 1)^(k-1) * x^k / k!.

A305787 Inverse Euler transform of (-n)^n.

Original entry on oeis.org

-1, 4, -23, 223, -2800, 42599, -763220, 15734388, -366715248, 9533820200, -273549419552, 8586984241870, -292755986184548, 10772849584162694, -425587711650564816, 17966217346985801150, -807152054953801845760, 38451365602113718874568, -1936082850634342992601636
Offset: 1

Views

Author

Seiichi Manyama, Jun 10 2018

Keywords

Examples

			(1-x) * (1-x^2)^(-4) * (1-x^3)^23 * (1-x^4)^(-223) * ... =  1 - x + 4*x^2 - 27*x^3 + 256*x^4 - ... .
		

Crossrefs

Formula

Product_{k>=1} 1/(1-x^k)^{a(k)} = Sum_{n>=0} (-n * x)^n.
a(n) ~ (-1)^n * n^n. - Vaclav Kotesovec, Oct 09 2019

A326501 a(n) = Sum_{k=0..n} (-k)^k.

Original entry on oeis.org

1, 0, 4, -23, 233, -2892, 43764, -779779, 15997437, -371423052, 9628576948, -275683093663, 8640417354593, -294234689237660, 10817772136320356, -427076118244539019, 18019667955465012597, -809220593930871751580, 38537187481365665823844
Offset: 0

Views

Author

Seiichi Manyama, Sep 12 2019

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<0, 0, (-n)^n+a(n-1)) end:
    seq(a(n), n=0..23);  # Alois P. Heinz, Sep 12 2019
  • Mathematica
    RecurrenceTable[{a[0] == 1, a[n] == a[n-1] + (-n)^n}, a, {n, 0, 23}] (* Jean-François Alcover, Nov 27 2020 *)
  • PARI
    {a(n) = sum(k=0, n, (-k)^k)}
    
  • Python
    from itertools import accumulate, count, islice
    def A326501_gen(): # generator of terms
        yield from accumulate((-k)**k for k in count(0))
    A326501_list = list(islice(A326501_gen(),10)) # Chai Wah Wu, Jun 18 2022

Formula

a(n) = 1 + (-1)^n * A001099(n).

A362568 E.g.f. satisfies A(x) = exp(x/A(x)^x).

Original entry on oeis.org

1, 1, 1, -5, -23, 121, 1321, -7349, -148175, 853777, 27840241, -163354949, -7934320679, 46820981065, 3203091569497, -18833438286389, -1742847946697759, 10137524365568161, 1230956201929018465, -7042544858204663813, -1095864481054115534519
Offset: 0

Views

Author

Seiichi Manyama, Apr 25 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x*exp(-lambertw(x^2)))))

Formula

E.g.f.: (x^2 / LambertW(x^2))^(1/x) = exp(LambertW(x^2) / x) = exp(x * exp(-LambertW(x^2))).
a(n) = n! * Sum_{k=0..floor(n/2)} (-1)^k * (n-k)^k * binomial(n-k-1,k)/(n-k)!.
E.g.f.: Sum_{k>=0} (-k*x + 1)^(k-1) * x^k / k!.

A340473 a(n) = n! [x^n] W(-W(x))/(-W(x)), where W(x) is the Lambert W function.

Original entry on oeis.org

1, 1, 1, 7, 13, 321, 31, 42673, -214983, 12251809, -156239909, 6366130761, -135725103227, 5265915854785, -155145910919817, 6318044844152161, -232403136941014799, 10299509100942804033, -446889500139353805773, 21789892230658085847673, -1078684347590588362463619
Offset: 0

Views

Author

Peter Luschny, Jan 08 2021

Keywords

Comments

Let LW(x) = W(-W(x))/(-W(x)) denote the function in the definition and let T(x) = -W(-x) be Euler's tree function A000169, and L(x) = W(-x)/(-x) the labeled tree function A000272, then LW(x) = L(W(x)), and TW(x) := -T(W(-x)) is A097174, and RW(x) := T(-W(-x)) is A207833.

Crossrefs

Programs

  • Maple
    W := x -> LambertW(x): gf := W(-W(x))/(-W(x)):
    ser := series(gf, x, 24): seq(n!*coeff(ser, x, n), n=0..20);
  • Mathematica
    gf := -ProductLog[-ProductLog[x]]/ProductLog[x];
    Range[0, 20]! CoefficientList[Series[gf, {x, 0, 20}], x]
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(lambertw(-lambertw(x))/(-lambertw(x)))) \\ Michel Marcus, Jan 09 2021
Previous Showing 11-20 of 23 results. Next