cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 142 results. Next

A180673 a(n) = Fibonacci(n+8) - Fibonacci(8).

Original entry on oeis.org

0, 13, 34, 68, 123, 212, 356, 589, 966, 1576, 2563, 4160, 6744, 10925, 17690, 28636, 46347, 75004, 121372, 196397, 317790, 514208, 832019, 1346248, 2178288, 3524557, 5702866, 9227444, 14930331, 24157796, 39088148, 63245965, 102334134
Offset: 0

Views

Author

Johannes W. Meijer, Sep 21 2010

Keywords

Comments

The a(n+1) (terms doubled) are the Kn17 sums of the Fibonacci(n) triangle A104763. See A180662 for information about these knight and other chess sums.

Crossrefs

Cf. A131524 (Kn11), A001911 (Kn12), A006327 (Kn13), A167616 (Kn14), A180671 (Kn15), A180672 (Kn16), A180673 (Kn17), A180674 (Kn18).

Programs

  • GAP
    List([0..40], n-> Fibonacci(n+8)-21); # G. C. Greubel, Jul 13 2019
  • Magma
    [Fibonacci(n+8) - Fibonacci(8): n in [0..40]]; // Vincenzo Librandi, Apr 24 2011
    
  • Maple
    nmax:=40: with(combinat): for n from 0 to nmax do a(n):=fibonacci(n+8)-fibonacci(8) od: seq(a(n),n=0..nmax);
  • Mathematica
    Fibonacci[8 +Range[0, 40]] -21 (* G. C. Greubel, Jul 13 2019 *)
  • PARI
    concat(0, Vec(x*(13+8*x)/((1-x)*(1-x-x^2)) + O(x^40))) \\ Colin Barker, Feb 24 2017
    
  • PARI
    a(n)=fibonacci(n+8)-21 \\ Charles R Greathouse IV, Feb 24 2017
    
  • SageMath
    [fibonacci(n+8)-21 for n in (0..40)] # G. C. Greubel, Jul 13 2019
    

Formula

a(n) = F(n+8) - F(8) with F(n) the Fibonacci numbers A000045.
a(n) = a(n-1) + a(n-2) + 21 for n>1, a(0)=0, a(1)=13, and where 21 = F(8).
G.f.: x*(13 + 8*x)/((1 - x)*(1 - x - x^2)). - Ilya Gutkovskiy, Feb 24 2017
a(n) = 13*A000071(n+2) + 8*A000071(n+1). - Bruno Berselli, Feb 24 2017
From Colin Barker, Feb 24 2017: (Start)
a(n) = (-21 + (2^(-1-n)*((1-sqrt(5))^n*(-47+21*sqrt(5)) + (1+sqrt(5))^n*(47+21*sqrt(5)))) / sqrt(5)).
a(n) = 2*a(n-1) - a(n-3) for n>2. (End)

A180674 a(n) = Fibonacci(n+9) - Fibonacci(9).

Original entry on oeis.org

0, 21, 55, 110, 199, 343, 576, 953, 1563, 2550, 4147, 6731, 10912, 17677, 28623, 46334, 74991, 121359, 196384, 317777, 514195, 832006, 1346235, 2178275, 3524544, 5702853, 9227431, 14930318, 24157783, 39088135, 63245952, 102334121
Offset: 0

Views

Author

Johannes W. Meijer, Sep 21 2010

Keywords

Comments

The a(n+1) (terms doubled) are the Kn18 sums of the Fibonacci(n) triangle A104763. See A180662 for information about these knight and other chess sums.

Crossrefs

Cf. A131524 (Kn11), A001911 (Kn12), A006327 (Kn13), A167616 (Kn14), A180671 (Kn15), A180672 (Kn16), A180673 (Kn17), A180674 (Kn18).

Programs

  • GAP
    List([0..40], n-> Fibonacci(n+9)-34); # G. C. Greubel, Jul 13 2019
  • Magma
    [Fibonacci(n+9) - Fibonacci(9): n in [0..40]]; // Vincenzo Librandi, Apr 24 2011
    
  • Maple
    nmax:=31: with(combinat): for n from 0 to nmax do a(n):=fibonacci(n+9)-fibonacci(9) od: seq(a(n),n=0..nmax);
  • Mathematica
    Fibonacci[9 +Range[0, 40]] -34 (* G. C. Greubel, Jul 13 2019 *)
    LinearRecurrence[{2,0,-1},{0,21,55},40] (* Harvey P. Dale, Aug 24 2024 *)
  • PARI
    concat(0, Vec(x*(21+13*x)/((1-x)*(1-x-x^2)) + O(x^40))) \\ Colin Barker, Feb 24 2017
    
  • PARI
    a(n) = fibonacci(n+9) - fibonacci(9) \\ Charles R Greathouse IV, Feb 24 2017
    
  • Sage
    [fibonacci(n+9)-34 for n in (0..40)] # G. C. Greubel, Jul 13 2019
    

Formula

a(n) = F(n+9) - F(9) with F = A000045.
a(n) = a(n-1) + a(n-2) + 34 for n>1, a(0)=0, a(1)=21, and where 34 = F(9).
G.f.: x*(21 + 13*x)/((1 - x)*(1 - x - x^2)). - Ilya Gutkovskiy, Feb 24 2017
a(n) = 21*A000071(n+2) + 13*A000071(n+1). - Bruno Berselli, Feb 24 2017
From Colin Barker, Feb 24 2017: (Start)
a(n) = (-34 + (2^(-n)*((1-sqrt(5))^n*(-38+17*sqrt(5)) + (1+sqrt(5))^n*(38+17*sqrt(5)))) / sqrt(5)).
a(n) = 2*a(n-1) - a(n-3) for n>2. (End)

A181532 a(0) = 0, a(1) = 1, a(2) = 1, a(3) = 2; a(n) = a(n-1) + a(n-2) + a(n-4).

Original entry on oeis.org

0, 1, 1, 2, 3, 6, 10, 18, 31, 55, 96, 169, 296, 520, 912, 1601, 2809, 4930, 8651, 15182, 26642, 46754, 82047, 143983, 252672, 443409, 778128, 1365520, 2396320, 4205249, 7379697, 12950466, 22726483, 39882198, 69988378, 122821042, 215535903, 378239143, 663763424
Offset: 0

Views

Author

Gary W. Adamson, Oct 28 2010

Keywords

Comments

Essentially the same as A060945: a(0)=0 and a(n)=A060945(n-1) for n>=1.
lim(n->infinity) a(n+1)/a(n) = A109134 = 1.754877666..., the square of the absolute value of one of the complex-valued roots of the characteristic polynomial. [R. J. Mathar, Nov 01 2010]
The Ze4 sums, see A180662 for the definition of these sums, of the ‘Races with Ties’ triangle A035317 lead to this sequence. [Johannes W. Meijer, Jul 20 2011]

Examples

			a(7) = 18 = a(6) + a(5) + a(3) = 10 + 6 + 2.
a(7) = 18 = (1 0, 2, 0, 2, 0, 3) dot (10, 6, 3, 2, 1, 1, 1) = (10 + 3 + 2 + 3).
		

Crossrefs

All of A060945, A077930, A181532 are variations of the same sequence. - N. J. A. Sloane, Mar 04 2012

Programs

  • Mathematica
    LinearRecurrence[{1,1,0,1},{0,1,1,2},40] (* Harvey P. Dale, Jun 20 2015 *)

Formula

a(0) = 0, a(1) = 1, a(2) = 1, a(3) = 2; a(n) = a(n-1) + a(n-2) + a(n-4).
G.f.: x/(1-x-x^2-x^4). [Franklin T. Adams-Watters, Feb 25 2011]
a(n) = |A077930(n)| = ( |A056016(n+2)|-(-1)^n)/5. [R. J. Mathar, Oct 29 2010]
a(n) = A060945(n-1), n>1. [R. J. Mathar, Nov 03 2010]

Extensions

Values from a(9) on changed by R. J. Mathar, Oct 29 2010
Edited and a(0) added by Franklin T. Adams-Watters, Feb 25 2011

A191372 The Sierpinski-Stern triangle.

Original entry on oeis.org

0, 1, 2, 1, 2, 1, 3, 2, 3, 2, 3, 1, 4, 2, 3, 2, 3, 1, 4, 3, 4, 2, 3, 1, 4, 3, 5, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 3, 5, 2, 5, 3, 4, 1, 6, 3, 6, 4, 5, 2, 4, 3, 5, 2, 5, 3, 4, 1, 5, 4, 7, 4, 6, 2, 5, 3, 5, 2, 5, 3, 4, 1, 5, 4, 7, 3
Offset: 0

Views

Author

Johannes W. Meijer, Jun 05 2011

Keywords

Comments

The knight sums of the first and second kind Kn1y(n) = Kn2y(n), y >= 1, see A180662 for their definitions, of Sierpinski's triangle A047999 lead to the formula Kn1y(n) = A002487(n+(2*y-1)) - AS2S2S2(n,d) where the AS2S2S2(n,d) is the infinite concatenation of a S2(T, d = y-1) sequence; see for the first ten S2(T, d) and the first four Kn1y(n) the examples.
The A191372 sequence is the concatenation of all S2(T, d) sequences, d >= 0. The lengths of the S2(T, d) sequences are 2^ceiling(log(d)/log(2)) for d >= 1 while the length of S2(T, d=0) is 1.
Both the concatenation of the S2(T, d = 2^p) sequences, p >= 0, and the concatenation of the S2(T, d = 2^p-1) sequences, p >= 0, lead to Stern’s diatomic series A002487(n), n >= 2.
The differences of the sequences (AS2S2S2(T, 2^p-delta) - AS2S2S2(T, 2^(p-1)-delta)), T from 0 to (2^(p-1) -1) and 1 <= delta <= (2^(p-1)-1) (take care that p <= pmax), lead to sequences that are snippets of A002487 and, surprisingly, their reverse; see the examples.
The row sums of the Sierpinski-Stern triangle are given by the terms of A191487.

Crossrefs

Cf. A047999 (Sierpinski), A002487 (Stern).

Programs

  • Maple
    nmax:=2^5; pmax:=log(nmax)/log(2)-1; A047999:=proc(n,k) option remember; A047999(n,k) :=binomial(n,k) mod 2 end: A002487:=proc(n) option remember; if n<=1 then n elif n mod 2=0 then A002487(n/2); else A002487((n-1)/2)+A002487((n+1)/2); fi; end: d:=0: for n from 0 to nmax-d-1 do Kn1(n,d):= add(A047999(n-k+d, k+d),k=0..floor(n/2)): AS2S2S2(n,d):= A002487(n+1+2*d)-Kn1(n,d): od: for p from 1 to pmax do for d from 2^(p-1) to 2^p do for n from 0 to nmax-d-1 do Kn1(n,d):=add(A047999(n-k+d, k+d),k=0..floor(n/2)): AS2S2S2(n,d):= A002487(n+1+2*d)-Kn1(n,d) od: od: od: S2(0,0):=AS2S2S2(0,0): a(0):=S2(0,0): for d from 1 to 2^pmax do for Tx from 0 to 2^ceil(log(d)/log(2))-1 do S2(Tx,d):=AS2S2S2(Tx,d) od: od: Ty:=0: for d from 1 to 2^pmax do for Tx from 0 to 2^ceil(log(d)/log(2))-1 do Ty:=Ty+1: a(Ty):=S2(Tx,d) od: od: S2(0,0); for d from 1 to 2^pmax do seq(S2(Tx,d), Tx=0..2^ceil(log(d)/ log(2))-1) od; seq(a(n),n=0..Ty);

Formula

The first few S2(T, d) rows of the Sierpinski-Stern triangle are:
d=0: [0]
d=1: [1]
d=2: [2, 1]
d=3: [2, 1, 3, 2]
d=4: [3, 2, 3, 1]
d=5: [4, 2, 3, 2, 3, 1, 4, 3]
d=6: [4, 2, 3, 1, 4, 3, 5, 2]
d=7: [3, 1, 4, 3, 5, 2, 5, 3]
d=8: [4, 3, 5, 2, 5, 3, 4, 1]
d=9: [6, 3, 6, 4, 5, 2, 4, 3, 5, 2, 5, 3, 4, 1, 5, 4]
The first four Kn1y(n), y = d+1, sequences:
Kn11(n) = A002487(n+1) - A000004(n)
Kn12(n) = A002487(n+3) - A000012(n)
Kn13(n) = A002487(n+5) - A000034(n+1)
Kn14(n) = A002487(n+7) - A157810(n+1)
Three (AS2S2S2(T, 2^p-delta) - AS2S2S2(T, 2^(p-1)-delta)) sequences for p=6:
delta = 1: [1, 0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4]
delta = 8: [4, 3, 5, 2, 5, 3, 4, 1, 3, 2, 3, 1, 2, 1, 1, 0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1]
delta = 16: [5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4, 5, 1, 4, 3, 5, 2, 5, 3, 4, 1, 3, 2, 3, 1, 2, 1, 1, 0]

A227505 Schroeder triangle sums: a(n) = A006603(n+3) - A006318(n+3) - A006319(n+2).

Original entry on oeis.org

1, 6, 31, 154, 763, 3808, 19197, 97772, 502749, 2607658, 13630635, 71743478, 379949431, 2023314980, 10828048409, 58206726936, 314157742457, 1701817879214, 9249717805207, 50427858276754, 275695956722547, 1511164724634440, 8302888160922965
Offset: 1

Views

Author

Johannes W. Meijer, Jul 15 2013

Keywords

Comments

The terms of this sequence equal the Kn23 sums, see A180662, of the Schroeder triangle A033877 (with offset 1 and n for columns and k for rows).

Crossrefs

Programs

  • Maple
    A227505 := proc(n) local k, T; T := proc(n, k) option remember; if n=1 then return(1) fi; if kA227505(n), n = 1..23);
    A227505 := proc(n): A006603(n+3) - A006318(n+3) - A006319(n+2) end: A006603 := n ->  add((k*add(binomial(n-k+2, i)*binomial(2*n-3*k-i+3, n-k+1), i= 0.. n-2*k+2))/(n-k+2), k= 1.. n/2+1): A006318 := n -> add(binomial(n+k, n-k) * binomial(2*k, k)/(k+1), k=0..n): A006319 := proc(n): if n=0 then 1 else A006318(n) - A006318(n-1) fi: end: seq(A227505(n), n=1..23);

Formula

a(n) = sum(A033877(n-2*k+2,n-k+3), k=1..floor((n+1)/2)).
a(n) = A006603(n+3) - A006318(n+3) - A006319(n+2).

A011779 Expansion of 1/((1-x)^3*(1-x^3)^2).

Original entry on oeis.org

1, 3, 6, 12, 21, 33, 51, 75, 105, 145, 195, 255, 330, 420, 525, 651, 798, 966, 1162, 1386, 1638, 1926, 2250, 2610, 3015, 3465, 3960, 4510, 5115, 5775, 6501, 7293, 8151, 9087, 10101, 11193, 12376, 13650
Offset: 0

Views

Author

Keywords

Comments

The Ca2 and Ze4 triangle sums of A139600 are related to the sequence given above, e.g., Ze4(n) = A011779(n-1) - A011779(n-2) - A011779(n-4) + 3*A011779(n-5), with A011779(n) = 0 for n <= -1. For the definitions of these triangle sums see A180662. - Johannes W. Meijer, Apr 29 2011

Crossrefs

Cf. A011779, A049347, A099254, A139600, A236770 (first trisection, except 0).

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 60);
    Coefficients(R!( 1/((1-x)^3*(1-x^3)^2) )); // G. C. Greubel, Oct 22 2024
    
  • Mathematica
    CoefficientList[Series[1 / ((1 - x)^3 (1 - x^3)^2), {x, 0, 100}], x] (* Vincenzo Librandi, Jun 23 2013 *)
  • PARI
    Vec(1/((1-x)^3*(1-x^3)^2)+O(x^99)) \\ Charles R Greathouse IV, Sep 25 2012
    
  • PARI
    a(n)=1/216 * n^4 + 1/12 * n^3 + 37/72 * n^2 + [5/4, 139/108, 131/108][1+n%3] * n + [1, 10/9, 7/9][1+n%3] \\ Yurii Ivanov, Jul 06 2021
    
  • SageMath
    def A011779_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/((1-x)^3*(1-x^3)^2) ).list()
    A011779_list(60) # G. C. Greubel, Oct 22 2024

Formula

a(n) = (1/216)*((208 + 270*n + 111*n^2 + 18*n^3 + n^4) - 8*(-1)^n*(A099254(n) + A099254(n-1)) + 16*(A049347(n) + 2*A049347(n-1)) ). - G. C. Greubel, Oct 22 2024

A049853 a(n) = a(n-1) + Sum_{k=0..n-3} a(k) for n >= 2, a(0)=1, a(1)=2.

Original entry on oeis.org

1, 2, 2, 3, 6, 11, 19, 33, 58, 102, 179, 314, 551, 967, 1697, 2978, 5226, 9171, 16094, 28243, 49563, 86977, 152634, 267854, 470051, 824882, 1447567, 2540303, 4457921, 7823106, 13728594, 24092003, 42278518, 74193627
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A070550, A180662 (Ca2).

Programs

  • Haskell
    a049853 n = a049853_list !! n
    a049853_list = 1 : 2 : 2 : 3 :
       zipWith (+) a049853_list
                   (zipWith (+) (drop 2 a049853_list) (drop 3 a049853_list))
    -- Reinhard Zumkeller, Aug 06 2011
    
  • Maple
    a := proc(n) option remember: if n<2 then n+1 else a(n-1) + add(a(k), k=0..n-3) fi end: seq(a(n), n=0..33); # Johannes W. Meijer, Jun 18 2018
  • Mathematica
    LinearRecurrence[{2,-1,1},{1,2,2},40] (* Harvey P. Dale, May 12 2022 *)
  • PARI
    Vec((1 - x)*(1 + x) / (1 - 2*x + x^2 - x^3) + O(x^40)) \\ Colin Barker, Jun 17 2018

Formula

a(n) = 2*a(n-1) - a(n-2) + a(n-3); 3 initial terms required.
a(n) = a(n-1) + a(n-2) + a(n-4) for n > 3. - Reinhard Zumkeller, Aug 06 2011
Empirical: a(n) = Sum_{k=0..floor(n/3)} A084534(n-2*k, n-3*k). - Johannes W. Meijer, Jun 17 2018
G.f.: (1 - x)*(1 + x) / (1 - 2*x + x^2 - x^3). - Colin Barker, Jun 17 2018

A103632 Expansion of (1 - x + x^2)/(1 - x - x^4).

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 3, 4, 6, 8, 11, 15, 21, 29, 40, 55, 76, 105, 145, 200, 276, 381, 526, 726, 1002, 1383, 1909, 2635, 3637, 5020, 6929, 9564, 13201, 18221, 25150, 34714, 47915, 66136, 91286, 126000, 173915, 240051, 331337, 457337, 631252, 871303, 1202640
Offset: 0

Views

Author

Paul Barry, Feb 11 2005

Keywords

Comments

Diagonal sums of A103631.
The Kn11 sums, see A180662, of triangle A065941 equal the terms of this sequence without a(0) and a(1). - Johannes W. Meijer, Aug 11 2011
For n >= 2, a(n) is the number of palindromic compositions of n-2 with parts in {2,1,3,5,7,9,...}. The generating function follows easily from Theorem 1,2 of the Hoggatt et al. reference. Example: a(9) = 8 because we have 7, 151, 11311, 232, 313, 12121, 21112, and 1111111. - Emeric Deutsch, Aug 17 2016
Essentially the same as A003411. - Georg Fischer, Oct 07 2018

Crossrefs

Cf. A275446.

Programs

  • GAP
    a:=[1,0,1,1];;  for n in [5..50] do a[n]:=a[n-1]+a[n-4]; od; a; # Muniru A Asiru, Oct 07 2018
    
  • Magma
    I:=[1,0,1,1]; [n le 4 select I[n] else Self(n-1) + Self(n-4): n in [1..50]]; // G. C. Greubel, Mar 10 2019
    
  • Maple
    A103632 := proc(n): add( binomial(floor((2*n-3*k-1)/2), n-2*k), k=0..floor(n/2)) end: seq(A103632(n), n=0..46); # Johannes W. Meijer, Aug 11 2011
  • Mathematica
    LinearRecurrence[{1,0,0,1}, {1,0,1,1}, 50] (* G. C. Greubel, Mar 10 2019 *)
  • PARI
    my(x='x+O('x^50)); Vec((1-x+x^2)/(1-x-x^4)) \\ G. C. Greubel, Mar 10 2019
    
  • Sage
    ((1-x+x^2)/(1-x-x^4)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Mar 10 2019

Formula

G.f.: (1 - x + x^2)/(1 - x - x^4).
a(n) = a(n-1) + a(n-4) with a(0)=1, a(1)=0, a(2)=1 and a(3)=1.
a(n) = Sum_{k=0..floor(n/2)} binomial(floor((2*n-3*k-1)/2), n-2*k).
a(n) = A003269(n+1) - A003269(n-4), n > 4.

Extensions

Formula corrected by Johannes W. Meijer, Aug 11 2011

A109222 Row sums of a triangle related to the Fibonacci polynomials.

Original entry on oeis.org

1, 2, 3, 6, 11, 21, 40, 76, 145, 276, 526, 1002, 1909, 3637, 6929, 13201, 25150, 47915, 91286, 173915, 331337, 631252, 1202640, 2291229, 4365172, 8316378, 15844082, 30185609, 57508601, 109563441, 208736561, 397677834, 757642355, 1443434582
Offset: 0

Views

Author

Paul Barry, Jun 22 2005

Keywords

Comments

Row sums of A109221.
The Kn4 sums, see A180662, of triangle A065941 equal the terms of this sequence a(n) while the Kn4 sums of triangle A194005 equal a(n+1)-1. - Johannes W. Meijer, Aug 14 2011

Programs

Formula

G.f.: (1 + x - x^2 - x^3)/(1 - x - 2x^2 + x^4);
a(n) = a(n-1) + 2a(n-2) - a(n-4);
a(n) = Sum_{k=0..n} binomial(floor((2n-k)/2)+n-k, 2n-2k).

A134393 Row sums of triangle A134392.

Original entry on oeis.org

1, 3, 8, 20, 45, 91, 168, 288, 465, 715, 1056, 1508, 2093, 2835, 3760, 4896, 6273, 7923, 9880, 12180, 14861, 17963, 21528, 25600, 30225, 35451, 41328, 47908, 55245, 63395, 72416, 82368, 93313, 105315, 118440, 132756, 148333, 165243, 183560, 203360, 224721, 247723, 272448
Offset: 1

Views

Author

Gary W. Adamson, Oct 23 2007

Keywords

Comments

Binomial transform of [1, 2, 3, 4, 2, 0, 0, 0, ...].
The Kn4 triangle sums of A139600 are given by this sequence. For the definitions of the Kn4 and other triangle sums see A180662. - Johannes W. Meijer, Apr 29 2011

Examples

			a(4) = 20 = (1, 3, 3, 1) dot (1, 2, 3, 4) = (1 + 6 + 9 + 4).
a(4) = sum of row 4 terms of triangle A134392: (8 + 7 + 4 + 1).
		

Crossrefs

Programs

  • Magma
    [Binomial(n+3, 4)-2*Binomial(n+2, 4)+ 3*Binomial(n+1, 4): n in [1..40]]; // Vincenzo Librandi, Feb 04 2013
    
  • Mathematica
    Table[(n^4 - 2*n^3 + 5*n^2 + 8*n)/12, {n, 1, 40}] (* Vincenzo Librandi, Feb 04 2013 *)
    LinearRecurrence[{5,-10,10,-5,1},{1,3,8,20,45},50] (* Harvey P. Dale, May 28 2018 *)
  • PARI
    x='x+O('x^99); Vec(x*(1-2*x+3*x^2)/(1-x)^5) \\ Altug Alkan, Aug 16 2017

Formula

From R. J. Mathar, Jun 08 2008: (Start)
O.g.f.: x*(1-2*x+3*x^2)/(1-x)^5.
a(n) = A014628(n+1). (End)
a(n) = binomial(n+3,4) - 2*binomial(n+2,4) + 3*binomial(n+1,4). - Johannes W. Meijer, Apr 29 2011, corrected by Eric Rowland, Aug 16 2017
a(n) = n*(n + 1)*(n^2 - 3*n + 8)/12. - Johannes W. Meijer, Apr 29 2011, corrected by Eric Rowland, Aug 16 2017
Previous Showing 101-110 of 142 results. Next