cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 142 results. Next

A180847 a(n) = (27^n-4^n)/23.

Original entry on oeis.org

0, 1, 31, 853, 23095, 623821, 16844191, 454797253, 12279542215, 331547705341, 8951788306351, 241698285320053, 6525853707835735, 176198050128342061, 4757347353532344511, 128448378545641737253, 3468106220733400647655
Offset: 0

Views

Author

Johannes W. Meijer, Sep 21 2010

Keywords

Comments

For n>0, a(n) appears in several triangle sums of Nicomachus' table A036561, i.e. Ze1(2*n), Ze1(2*n+1)/2; Ze4(3*n), Ze4(3*n+1)/3 and Ze4(3*n+2)/9. See A180662 for information about these zebra and other chess sums.

Crossrefs

Programs

  • Mathematica
    Table[(27^n-4^n)/23,{n,0,20}] (* or *) LinearRecurrence[{31,-108},{0,1},20]  (* Harvey P. Dale, Sep 01 2011 *)
  • PARI
    a(n)=(27^n-4^n)/23 \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(n) = (27^n-4^n)/23.
G.f.: x/((27*x-1)*(4*x-1)).
a(0)=0, a(1)=1, a(n) = 31*a(n-1)-108*a(n-2). - Harvey P. Dale, Sep 01 2011

A192928 The Gi1 and Gi2 sums of Losanitsch's triangle A034851.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 3, 5, 6, 9, 11, 16, 20, 29, 37, 53, 69, 98, 130, 183, 245, 343, 463, 646, 877, 1220, 1664, 2310, 3161, 4381, 6009, 8319, 11430, 15811, 21751, 30070, 41405, 57216, 78836, 108906, 150130, 207346
Offset: 0

Views

Author

Johannes W. Meijer, Jul 14 2011

Keywords

Comments

The Gi1 and Gi2 sums, see A180662 for their definitions, of Losanitsch's triangle A034851 equal this sequence.
From Johannes W. Meijer, Aug 26 2013: (Start)
The a(n) are also the Ca1 and Ca2 sums of McGarvey’s triangle A102541.
Furthermore they are the Kn11 and Kn12 sums of triangle A228570.
And finally the terms of this sequence are the row sums of triangle A228572. (End)

Crossrefs

Programs

  • Maple
    A192928 := proc(n): (A003269(n+1)+x(n)+x(n-1)+x(n-4))/2 end: A003269 := proc(n): sum(binomial(n-1-3*j, j), j=0..(n-1)/3) end: x:=proc(n): if type(n,even) then A003269(n/2+1) else 0 fi: end: seq(A192928(n),n=0..42);
  • Mathematica
    LinearRecurrence[{1, 1, -1, 1, 0, -1, 0, 1, -1, 0, 0, -1}, {1, 1, 1, 1, 2, 2, 3, 3, 5, 6, 9, 11}, 43] (* Jean-François Alcover, Nov 16 2017 *)

Formula

G.f.: (-1/2)*(1/(x^4+x-1) + (1+x+x^4)/(x^8+x^2-1))= -(1+x)*(x^7-x^6+x^5+x-1) / ( (x^4+x-1)*(x^8+x^2-1) ).
a(n) = (A003269(n+1)+x(n)+x(n-1)+x(n-4))/2 with x(2*n) = A003269(n+1) and x(2*n+1) = 0.
From Johannes W. Meijer, Aug 26 2013: (Start)
a(n) = sum(A228572(n, k), k=0..n)
a(n) = sum(A228570(n-k, k), k=0..floor(n/2))
a(n) = sum(A102541(n-2*k, k), k=0..floor(n/3))
a(n) = sum(A034851(n-3*k, k), k=0..floor(n/4)) (End)

A005683 Numbers of Twopins positions.

Original entry on oeis.org

1, 2, 3, 5, 8, 13, 22, 37, 63, 108, 186, 322, 559, 973, 1697, 2964, 5183, 9071, 15886, 27835, 48790, 85545, 150021, 263136, 461596, 809812, 1420813, 2492945, 4374273, 7675598, 13468787, 23634817, 41474548, 72780553, 127718046, 224125677, 393308019, 690200668
Offset: 3

Views

Author

Keywords

Comments

Appears to be a bisection of A068930. - Ralf Stephan, Apr 20 2004
The Ze3 and Ze4 sums, see A180662 for their definitions, of Losanitsch's triangle A034851 lead to this sequence with a(1) = 1 and a(2) = 1; the recurrence relation below confirms these values and gives a(0) = 0. - Johannes W. Meijer, Jul 14 2011
The complete sequence by R. K. Guy in "Anyone for Twopins?" starts with a(0)=0, a(1)=1 and a(2)=1 and has g.f. x*(1-x-x^2)/(1-2*x+x^4+x^6). - Johannes W. Meijer, Aug 14 2011
a(n) is the number of equivalence classes of subsets of {1..n-2} without isolated elements up to reflection. The reflection of a subset is the set obtained by mapping each element i to n + 1 - i. For example, the a(6)=5 equivalence classes of subsets of {1..4} are {}, {1,2}/{3,4}, {2,3}, {1,2,3}/{2,3,4}, {1,2,3,4}. If reflections are not considered equivalent then A005251(n) gives the number of subsets of {1..n-2} without isolated elements. - Andrew Howroyd, Dec 24 2019

References

  • R. K. Guy, "Anyone for Twopins?", in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A005683:=-(-1+z**2+z**3+z**4+z**5)/(z**3-z**2+2*z-1)/(z**3+z**2-1); [Conjectured by Simon Plouffe in his 1992 dissertation.]
  • Mathematica
    CoefficientList[Series[(1-x^2-x^3-x^4-x^5)/(1-2x+x^4+x^6),{x,0,40}],x] (* or *) LinearRecurrence[{2,0,0,-1,0,-1},{1,2,3,5,8,13},40] (* Harvey P. Dale, Jun 20 2011 *)

Formula

G.f.: x^3*(1-x^2-x^3-x^4-x^5)/(1-2*x+x^4+x^6). - Ralf Stephan, Apr 20 2004
a(3)=1, a(4)=2, a(5)=3, a(6)=5, a(7)=8, a(8)=13, a(n)=2*a(n-1)- a(n-4)- a(n-6). - Harvey P. Dale, Jun 20 2011
a(n) = (A005251(n) + A000931(n+4))/2. - Andrew Howroyd, Dec 24 2019

Extensions

More terms from Harvey P. Dale, Jun 20 2011

A102543 Antidiagonal sums of the antidiagonals of Losanitsch's triangle.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 6, 8, 12, 16, 24, 33, 49, 69, 102, 145, 214, 307, 452, 653, 960, 1393, 2046, 2978, 4371, 6376, 9354, 13665, 20041, 29307, 42972, 62884, 92191, 134974, 197858, 289772, 424746, 622198, 911970, 1336121, 1958319, 2869417, 4205538, 6162579, 9031996, 13235661, 19398240
Offset: 0

Views

Author

Gerald McGarvey, Feb 24 2005

Keywords

Comments

The Ca1 and Ca2 sums, see A180662 for their definitions, of Losanitsch's triangle A034851 equal this sequence. - Johannes W. Meijer, Jul 14 2011
For n >= 5, a(n+1)-1 is the number of non-isomorphic snake polyominoes with n cells that can be inscribed in a rectangle of height 2. - Christian Barrientos and Sarah Minion, Jul 29 2018

Crossrefs

Programs

  • Maple
    A102543 := proc(n): (A000930(n)+x(n)+x(n-1)+x(n-3))/2 end: A000930:=proc(n): sum(binomial(n-2*i, i), i=0..n/3) end: x:=proc(n): if type(n, even) then A000930(n/2) else 0 fi: end: seq(A102543(n), n=0..38); # Johannes W. Meijer, Jul 14 2011
  • Mathematica
    CoefficientList[Series[(1 - x^2 - x^4 - x^6)/((x^3 + x - 1)*(x^6 + x^2 - 1)), {x, 0, 50}], x] (* G. C. Greubel, Apr 27 2017 *)
    LinearRecurrence[{1,1,0,0,-1,1,-1,0,-1},{1,1,1,2,2,3,4,6,8},50] (* Harvey P. Dale, Dec 14 2023 *)
  • PARI
    x='x+O('x^50); Vec((1 - x^2 - x^4 - x^6)/((x^3 + x - 1)*(x^6 + x^2 - 1))) \\ G. C. Greubel, Apr 27 2017

Formula

a(n) = A068927(n-1), n>3.
From Johannes W. Meijer, Jul 14 2011: (Start)
G.f.: (-1/2)*(1/(x^3+x-1)+(1+x+x^3)/(x^6+x^2-1))= ( 1-x^2-x^4-x^6 ) / ( (x^3+x-1)*(x^6+x^2-1) ).
a(n) = (A000930(n)+x(n)+x(n-1)+x(n-3))/2 with x(2*n) = A000930(n) and x(2*n+1) = 0. (End)

A180668 a(n) = a(n-1)+a(n-2)+a(n-3)+4*n-8 with a(0)=0, a(1)=0 and a(2)=1.

Original entry on oeis.org

0, 0, 1, 5, 14, 32, 67, 133, 256, 484, 905, 1681, 3110, 5740, 10579, 19481, 35856, 65976, 121377, 223277, 410702, 755432, 1389491, 2555709, 4700720, 8646012, 15902537, 29249369, 53798022, 98950036, 181997539, 334745713
Offset: 0

Views

Author

Johannes W. Meijer, Sep 21 2010

Keywords

Comments

The a(n+2) represent the Kn13 and Kn23 sums of the square array of Delannoy numbers A008288. See A180662 for the definition of these knight and other chess sums.

Crossrefs

Cf. A000073 (Kn11 & Kn21), A089068 (Kn12 & Kn22), A180668 (Kn13 & Kn23), A180669 (Kn14 & Kn24), A180670 (Kn15 & Kn25).

Programs

  • Maple
    nmax:=31: a(0):=0: a(1):=0: a(2):=1: for n from 3 to nmax do a(n):= a(n-1)+a(n-2)+a(n-3)+4*n-8 od: seq(a(n),n=0..nmax);
  • Mathematica
    LinearRecurrence[{3,-2,0,-1,1},{0,0,1,5,14},40] (* Harvey P. Dale, Dec 15 2023 *)

Formula

a(n) = a(n-1)+a(n-2)+a(n-3)+4*n-8 with a(0)=0, a(1)=0 and a(2)=1.
a(n) = a(n-1)+A001590(n+3)-2 with a(0)=0.
a(n) = sum(A008574(m)*A000073(n-m),m=0..n).
a(n+2) = add(A008288(n-k+2,k+2),k=0..floor(n/2)).
GF(x) = (x^2*(1+x)^2)/((1-x)^2*(1-x-x^2-x^3)).
Contribution from Bruno Berselli, Sep 23 2010: (Start)
a(n) = 2*a(n-1)-a(n-4)+4 for n>4.
a(n)-3*a(n-1)+2a(n-2)+a(n-4)-a(n-5) = 0 for n>4. (End)

A180669 a(n) = a(n-1)+a(n-2)+a(n-3)+4*n^2-16*n+18 with a(0)=0, a(1)=0 and a(2)=1.

Original entry on oeis.org

0, 0, 1, 7, 26, 72, 171, 371, 760, 1500, 2889, 5475, 10266, 19116, 35435, 65495, 120832, 222664, 410017, 754671, 1388650, 2554784, 4699707, 8644907, 15901336, 29248068, 53796617, 98948523, 181995914, 334743972, 615691547
Offset: 0

Views

Author

Johannes W. Meijer, Sep 21 2010

Keywords

Comments

The a(n+2) represent the Kn14 and Kn24 sums of the square array of Delannoy numbers A008288. See A180662 for the definition of these knight and other chess sums.

Crossrefs

Cf. A000073 (Kn11 & Kn21), A089068 (Kn12 & Kn22), A180668 (Kn13 & Kn23), A180669 (Kn14 & Kn24), A180670 (Kn15 & Kn25).

Programs

  • Maple
    nmax:=30: a(0):=0: a(1):=0: a(2):=1: for n from 3 to nmax do a(n):= a(n-1)+a(n-2)+a(n-3)+4*(n-2)^2+2 od: seq(a(n),n=0..nmax);
  • Mathematica
    nxt[{n_,a_,b_,c_}]:={n+1,b,c,a+b+c+4n(n-2)+6}; NestList[nxt,{2,0,0,1},30][[;;,2]] (* or *) LinearRecurrence[{4,-5,2,-1,2,-1},{0,0,1,7,26,72},40] (* Harvey P. Dale, Jul 13 2024 *)

Formula

a(n) = a(n-1)+a(n-2)+a(n-3)+4*(n-2)^2+2 with a(0)=0, a(1)=0 and a(2)=1.
a(n) = a(n-1)+A001590(n+5)-2-4*n with a(0)=0.
a(n) = Sum_{m=0..n} A005899(m)*A000073(n-m).
a(n+2) = Sum_{k=0..floor(n/2)} A008288(n-k+3,k+3).
GF(x) = (x^2*(1+x)^3)/((1-x)^3*(1-x-x^2-x^3)).
From Bruno Berselli, Sep 23 2010: (Start)
a(n) = 3*a(n-1)-2a(n-2)-a(n-4)+a(n-5)+8 for n>4.
a(n)-4*a(n-1)+5a(n-2)-2*a(n-3)+a(n-4)-2*a(n-5)+a(n-6) = 0 for n>5. (End)

A180670 a(n) = a(n-1)+a(n-2)+a(n-3)+(8*n^3-48*n^2+112*n-96)/3 with a(0)=0, a(1)=0 and a(2)=1.

Original entry on oeis.org

0, 0, 1, 9, 42, 140, 383, 925, 2056, 4316, 8705, 17069, 32810, 62192, 116743, 217673, 404000, 747496, 1380177, 2544865, 4688186, 8631620, 15886111, 29230725, 53776968, 98926372, 181971057, 334716197, 615660634, 1132400520
Offset: 0

Views

Author

Johannes W. Meijer, Sep 21 2010

Keywords

Comments

The a(n+2) represent the Kn15 and Kn25 sums of the square array of Delannoy numbers A008288. See A180662 for the definition of these knight and other chess sums.

Crossrefs

Cf. A000073 (Kn11 & Kn21), A089068 (Kn12 & Kn22), A180668 (Kn13 & Kn23), A180669 (Kn14 & Kn24), A180670 (Kn15 & Kn25).

Programs

  • Maple
    nmax:=29: a(0):=0: a(1):=0: a(2):=1: for n from 3 to nmax do a(n):= a(n-1)+a(n-2)+a(n-3)+(8*n^3-48*n^2+112*n-96)/3 od: seq(a(n),n=0..nmax);
  • Mathematica
    RecurrenceTable[{a[0]==a[1]==0,a[2]==1,a[n]==a[n-1]+a[n-2]+a[n-3]+(8n^3-48n^2+112n-96)/3},a,{n,30}] (* or *) LinearRecurrence[{5,-9,7,-3,3,-3,1},{0,0,1,9,42,140,383},30] (* Harvey P. Dale, Dec 04 2019 *)

Formula

a(n) = a(n-1)+a(n-2)+a(n-3)+(8*n^3-48*n^2+112*n-96)/3 with a(0)=0, a(1)=0 and a(2)=1.
a(n) = a(n-1)+A001590(n+7)-(12+4*n+4*n^2) with a(0)=0.
a(n) = sum(A008412(m)*A000073(n-m),m=0..n).
a(n+2) = add(A008288(n-k+4,k+4),k=0..floor(n/2)).
GF(x) = (x^2*(1+x)^4)/((1-x)^4*(1-x-x^2-x^3)).

A180671 a(n) = Fibonacci(n+6) - Fibonacci(6).

Original entry on oeis.org

0, 5, 13, 26, 47, 81, 136, 225, 369, 602, 979, 1589, 2576, 4173, 6757, 10938, 17703, 28649, 46360, 75017, 121385, 196410, 317803, 514221, 832032, 1346261, 2178301, 3524570, 5702879, 9227457, 14930344, 24157809, 39088161, 63245978, 102334147, 165580133
Offset: 0

Views

Author

Johannes W. Meijer, Sep 21 2010

Keywords

Comments

The a(n+1) (terms doubled) are the Kn15 sums of the Fibonacci(n) triangle A104763. See A180662 for information about these knight and other chess sums.

Crossrefs

Cf. A000045.
Cf. A131524 (Kn11), A001911 (Kn12), A006327 (Kn13), A167616 (Kn14), A180671 (Kn15), A180672 (Kn16), A180673 (Kn17), A180674 (Kn18).

Programs

  • GAP
    List([0..40], n-> Fibonacci(n+6)-8); # G. C. Greubel, Jul 13 2019
  • Magma
    [Fibonacci(n+6)-Fibonacci(6): n in [0..40]]; // Vincenzo Librandi, Apr 24 2011
    
  • Maple
    nmax:=40: with(combinat): for n from 0 to nmax do a(n):=fibonacci(n+6)-fibonacci(6) od: seq(a(n),n=0..nmax);
  • Mathematica
    f[n_]:= Fibonacci[n+6] - Fibonacci[6]; Array[f, 40, 0] (* or *)
    LinearRecurrence[{2,0,-1}, {0,5,13}, 41] (* or *)
    CoefficientList[Series[x(3x+5)/(x^3-2x+1), {x,0,40}], x] (* Robert G. Wilson v, Apr 11 2017 *)
  • PARI
    for(n=1,40,print(fibonacci(n+6)-fibonacci(6))); \\ Anton Mosunov, Mar 02 2017
    
  • PARI
    concat(0, Vec(x*(5+3*x)/((1-x)*(1-x-x^2)) + O(x^40))) \\ Colin Barker, Apr 20 2017
    
  • Sage
    [fibonacci(n+6)-8 for n in (0..40)] # G. C. Greubel, Jul 13 2019
    

Formula

a(n) = F(n+6) - F(6) with F = A000045.
a(n) = a(n-1) + a(n-2) + 8 for n>1, a(0)=0, a(1)=5, and where 8 = F(6).
From Colin Barker, Apr 13 2012: (Start)
G.f.: x*(5 + 3*x)/((1 - x)*(1 - x - x^2)).
a(n) = 2*a(n-1) - a(n-3). (End)
a(n) = (-8 + (2^(-n)*((1-sqrt(5))^n*(-9+4*sqrt(5)) + (1+sqrt(5))^n*(9+4*sqrt(5)))) / sqrt(5)). - Colin Barker, Apr 20 2017

A180672 a(n) = Fibonacci(n+7) - Fibonacci(7).

Original entry on oeis.org

0, 8, 21, 42, 76, 131, 220, 364, 597, 974, 1584, 2571, 4168, 6752, 10933, 17698, 28644, 46355, 75012, 121380, 196405, 317798, 514216, 832027, 1346256, 2178296, 3524565, 5702874, 9227452, 14930339, 24157804, 39088156, 63245973
Offset: 0

Views

Author

Johannes W. Meijer, Sep 21 2010

Keywords

Comments

The a(n+1) (terms doubled) are the Kn16 sums of the Fibonacci(n) triangle A104763. See A180662 for information about these knight and other chess sums.

Crossrefs

Cf. A131524 (Kn11), A001911 (Kn12), A006327 (Kn13), A167616 (Kn14), A180671 (Kn15), A180672 (Kn16), A180673 (Kn17), A180674 (Kn18).

Programs

  • GAP
    List([0..40], n-> Fibonacci(n+7)-13 ); # G. C. Greubel, Jul 13 2019
  • Magma
    [Fibonacci(n+7) - Fibonacci(7): n in [0..40]]; // Vincenzo Librandi, Apr 24 2011
    
  • Maple
    nmax:=40: with(combinat): for n from 0 to nmax do a(n):=fibonacci(n+7)-fibonacci(7) od: seq(a(n),n=0..nmax);
  • Mathematica
    Fibonacci[7 +Range[0, 40]] -13 (* G. C. Greubel, Jul 13 2019 *)
  • PARI
    concat(0, Vec(x*(8+5*x)/((1-x)*(1-x-x^2)) + O(x^40))) \\ Colin Barker, Feb 24 2017
    
  • PARI
    a(n)=fibonacci(n+7)-fibonacci(7) \\ Charles R Greathouse IV, Feb 24 2017
    
  • Sage
    [fibonacci(n+7)-13 for n in (0..40)] # G. C. Greubel, Jul 13 2019
    

Formula

a(n) = F(n+7) - F(7) with F = A000045.
a(n) = a(n-1) + a(n-2) + 13 for n>1, a(0)=0, a(1)=8, and where 13 = F(7).
G.f.: x*(8 + 5*x)/((1 - x)*(1 - x - x^2)). - Ilya Gutkovskiy, Feb 24 2017
From Colin Barker, Feb 24 2017: (Start)
a(n) = (-13 + (2^(-1-n)*((1-sqrt(5))^n*(-29+13*sqrt(5)) + (1+sqrt(5))^n*(29+13*sqrt(5)))) / sqrt(5)).
a(n) = 2*a(n-1) - a(n-3) for n>2. (End)
a(n) = 8*A000071(n+2) + 5*A000071(n+1). - Bruno Berselli, Feb 24 2017

A180673 a(n) = Fibonacci(n+8) - Fibonacci(8).

Original entry on oeis.org

0, 13, 34, 68, 123, 212, 356, 589, 966, 1576, 2563, 4160, 6744, 10925, 17690, 28636, 46347, 75004, 121372, 196397, 317790, 514208, 832019, 1346248, 2178288, 3524557, 5702866, 9227444, 14930331, 24157796, 39088148, 63245965, 102334134
Offset: 0

Views

Author

Johannes W. Meijer, Sep 21 2010

Keywords

Comments

The a(n+1) (terms doubled) are the Kn17 sums of the Fibonacci(n) triangle A104763. See A180662 for information about these knight and other chess sums.

Crossrefs

Cf. A131524 (Kn11), A001911 (Kn12), A006327 (Kn13), A167616 (Kn14), A180671 (Kn15), A180672 (Kn16), A180673 (Kn17), A180674 (Kn18).

Programs

  • GAP
    List([0..40], n-> Fibonacci(n+8)-21); # G. C. Greubel, Jul 13 2019
  • Magma
    [Fibonacci(n+8) - Fibonacci(8): n in [0..40]]; // Vincenzo Librandi, Apr 24 2011
    
  • Maple
    nmax:=40: with(combinat): for n from 0 to nmax do a(n):=fibonacci(n+8)-fibonacci(8) od: seq(a(n),n=0..nmax);
  • Mathematica
    Fibonacci[8 +Range[0, 40]] -21 (* G. C. Greubel, Jul 13 2019 *)
  • PARI
    concat(0, Vec(x*(13+8*x)/((1-x)*(1-x-x^2)) + O(x^40))) \\ Colin Barker, Feb 24 2017
    
  • PARI
    a(n)=fibonacci(n+8)-21 \\ Charles R Greathouse IV, Feb 24 2017
    
  • SageMath
    [fibonacci(n+8)-21 for n in (0..40)] # G. C. Greubel, Jul 13 2019
    

Formula

a(n) = F(n+8) - F(8) with F(n) the Fibonacci numbers A000045.
a(n) = a(n-1) + a(n-2) + 21 for n>1, a(0)=0, a(1)=13, and where 21 = F(8).
G.f.: x*(13 + 8*x)/((1 - x)*(1 - x - x^2)). - Ilya Gutkovskiy, Feb 24 2017
a(n) = 13*A000071(n+2) + 8*A000071(n+1). - Bruno Berselli, Feb 24 2017
From Colin Barker, Feb 24 2017: (Start)
a(n) = (-21 + (2^(-1-n)*((1-sqrt(5))^n*(-47+21*sqrt(5)) + (1+sqrt(5))^n*(47+21*sqrt(5)))) / sqrt(5)).
a(n) = 2*a(n-1) - a(n-3) for n>2. (End)
Previous Showing 91-100 of 142 results. Next