A024792
Number of 8's in all partitions of n.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 15, 23, 31, 44, 59, 82, 108, 146, 191, 254, 328, 429, 549, 709, 900, 1148, 1446, 1829, 2286, 2865, 3559, 4427, 5465, 6752, 8288, 10178, 12429, 15175, 18442, 22404, 27102, 32767, 39473, 47516, 57012, 68349, 81703, 97579, 116236
Offset: 1
-
b:= proc(n, i) option remember; local g;
if n=0 or i=1 then [1, 0]
else g:= `if`(i>n, [0$2], b(n-i, i));
b(n, i-1) +g +[0, `if`(i=8, g[1], 0)]
fi
end:
a:= n-> b(n, n)[2]:
seq(a(n), n=1..100); # Alois P. Heinz, Oct 27 2012
-
Table[ Count[ Flatten[ IntegerPartitions[n]], 8], {n, 1, 53} ]
(* second program: *)
b[n_, i_] := b[n, i] = Module[{g}, If[n == 0 || i == 1, {1, 0}, g = If[i > n, {0, 0}, b[n - i, i]]; b[n, i - 1] + g + {0, If[i == 8, g[[1]], 0]}]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Oct 09 2015, after Alois P. Heinz *)
A024793
Number of 9's in all partitions of n.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 15, 22, 31, 43, 58, 80, 106, 142, 187, 246, 319, 416, 533, 685, 872, 1108, 1397, 1762, 2204, 2755, 3426, 4251, 5250, 6476, 7950, 9746, 11905, 14514, 17638, 21403, 25888, 31265, 37661, 45288, 54329, 65079, 77775
Offset: 1
-
b:= proc(n, i) option remember; local g;
if n=0 or i=1 then [1, 0]
else g:= `if`(i>n, [0$2], b(n-i, i));
b(n, i-1) +g +[0, `if`(i=9, g[1], 0)]
fi
end:
a:= n-> b(n, n)[2]:
seq(a(n), n=1..100); # Alois P. Heinz, Oct 27 2012
-
Table[ Count[ Flatten[ IntegerPartitions[n]], 9], {n, 1, 55} ]
(* second program: *)
b[n_, i_] := b[n, i] = Module[{g}, If[n == 0 || i == 1, {1, 0}, g = If[i > n, {0, 0}, b[n - i, i]]; b[n, i - 1] + g + {0, If[i == 9, g[[1]], 0]}]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Oct 09 2015, after Alois P. Heinz *)
A208478
Triangle read by rows: T(n,k) = number of partitions of n with positive k-th rank.
Original entry on oeis.org
0, 1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 3, 2, 1, 5, 2, 4, 4, 2, 1, 6, 3, 5, 6, 4, 2, 1, 10, 5, 7, 9, 7, 4, 2, 1, 13, 7, 9, 11, 11, 7, 4, 2, 1, 19, 11, 12, 15, 16, 12, 7, 4, 2, 1, 25, 16, 15, 19, 22, 18, 12, 7, 4, 2, 1, 35, 24, 20, 26, 29, 27, 19, 12, 7, 4, 2, 1
Offset: 1
For n = 4 the partitions of 4 and the four types of ranks of the partitions of 4 are
----------------------------------------------------------
Partitions First Second Third Fourth
of 4 rank rank rank rank
----------------------------------------------------------
4 4-1 = 3 0-1 = -1 0-1 = -1 0-1 = -1
3+1 3-2 = 1 1-1 = 0 0-1 = -1 0-0 = 0
2+2 2-2 = 0 2-2 = 0 0-0 = 0 0-0 = 0
2+1+1 2-3 = -1 1-1 = 0 1-0 = 1 0-0 = 0
1+1+1+1 1-4 = -3 1-0 = 1 1-0 = 1 1-0 = 1
----------------------------------------------------------
The number of partitions of 4 with positive k-th ranks are 2, 1, 2, 1 so row 4 lists 2, 1, 2, 1.
Triangle begins:
0;
1, 1;
1, 1, 1;
2, 1, 2, 1;
3, 1, 3, 2, 1;
5, 2, 4, 4, 2, 1;
6, 3, 5, 6, 4, 2, 1;
10, 5, 7, 9, 7, 4, 2, 1;
13, 7, 9, 11, 11, 7, 4, 2, 1;
19, 11, 12, 15, 16, 12, 7, 4, 2, 1;
25, 16, 15, 19, 22, 18, 12, 7, 4, 2, 1;
35, 24, 20, 26, 29, 27, 19, 12, 7, 4, 2, 1;
...
Cf.
A063995,
A105805,
A181187,
A194547,
A194549,
A195822,
A208482,
A208483,
A209616,
A330368,
A330369,
A330370.
A209423
Difference between the number of odd parts and the number of even parts in all the partitions of n.
Original entry on oeis.org
1, 1, 4, 4, 10, 13, 24, 30, 52, 68, 105, 137, 202, 264, 376, 485, 669, 864, 1162, 1486, 1968, 2501, 3256, 4110, 5285, 6630, 8434, 10511, 13241, 16417, 20505, 25273, 31344, 38438, 47346, 57782, 70746, 85947, 104663, 126594, 153386, 184793, 222865, 267452
Offset: 1
The partitions of 5 are [5], [4,1], [3,2], [3,1,1], [2,2,1], [2,1,1,1], and [1,1,1,1,1], a total of 15 odd parts and 5 even parts, so that a(5)=10.
-
b:= proc(n, i) option remember; local m, f, g;
m:= irem(i, 2);
if n=0 then [1, 0, 0]
elif i<1 then [0, 0, 0]
else f:= b(n, i-1); g:= `if`(i>n, [0$3], b(n-i, i));
[f[1]+g[1], f[2]+g[2]+m*g[1], f[3]+g[3]+(1-m)*g[1]]
fi
end:
a:= n-> b(n, n)[2] -b(n, n)[3]:
seq(a(n), n=1..50); # Alois P. Heinz, Jul 09 2012
g := add(x^j/(1+x^j), j = 1 .. 80)/mul(1-x^j, j = 1 .. 80): gser := series(g, x = 0, 50): seq(coeff(gser, x, n), n = 0 .. 45); # Emeric Deutsch, Feb 08 2016
-
f[n_, i_] := Count[Flatten[IntegerPartitions[n]], i]
o[n_] := Sum[f[n, i], {i, 1, n, 2}]
e[n_] := Sum[f[n, i], {i, 2, n, 2}]
Table[o[n], {n, 1, 45}] (* A066897 *)
Table[e[n], {n, 1, 45}] (* A066898 *)
%% - % (* A209423 *)
b[n_, i_] := b[n, i] = Module[{m, f, g}, m = Mod[i, 2]; If[n==0, {1, 0, 0}, If[i<1, {0, 0, 0}, f = b[n, i-1]; g = If[i>n, {0, 0, 0}, b[n-i, i]]; {f[[1]] + g[[1]], f[[2]] + g[[2]] + m*g[[1]], f[[3]] + g[[3]] + (1-m)* g[[1]]}]]]; a[n_] := b[n, n][[2]] - b[n, n][[3]]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Nov 16 2015, after Alois P. Heinz *)
A221649
Tetrahedron E(n,j,k) = k*T(j,k)*p(n-j), where T(j,k) = 1 if k divides j otherwise 0.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 2, 1, 0, 3, 3, 2, 4, 1, 0, 3, 1, 2, 0, 4, 5, 3, 6, 2, 0, 6, 1, 2, 0, 4, 1, 0, 0, 0, 5, 7, 5, 10, 3, 0, 9, 2, 4, 0, 8, 1, 0, 0, 0, 5, 1, 2, 3, 0, 0, 6, 11, 7, 14, 5, 0, 15, 3, 6, 0, 12, 2, 0, 0, 0, 10, 1, 2, 3, 0, 0, 6, 1, 0, 0, 0, 0, 0, 7
Offset: 1
First five slices of tetrahedron are
---------------------------------------------------
n j / k 1 2 3 4 5 6 A221529 A066186
---------------------------------------------------
1 1 1, 1 1
...................................................
2 1 1, 1
2 2 1, 2, 3 4
...................................................
3 1 2, 2
3 2 1, 2, 3
3 3 1, 0, 3, 4 9
...................................................
4 1 3, 3
4 2 2, 4, 6
4 3 1, 0, 3, 4
4 4 1, 2, 0, 4, 7 20
...................................................
5 1 5, 5
5 2 3, 6, 9
5, 3, 2, 0, 6, 8
5, 4, 1, 2, 0, 4, 7
5, 5, 1, 0, 0, 0, 5, 6 35
...................................................
.
From _Omar E. Pol_, Jul 26 2021: (Start)
The slices of the tetrahedron appear in the upper zone of the following table (formed by four zones) which shows the correspondence between divisors and parts (n = 1..5):
.
|---|---------|-----|-------|---------|-----------|-------------|
| n | | 1 | 2 | 3 | 4 | 5 |
|---|---------|-----|-------|---------|-----------|-------------|
| | - | | | | | 5 |
| C | - | | | | 3 | 3 6 |
| O | - | | | 2 | 2 4 | 2 0 6 |
| N | A127093 | | 1 | 1 2 | 1 0 3 | 1 2 0 4 |
| D | A127093 | 1 | 1 2 | 1 0 3 | 1 2 0 4 | 1 0 0 0 5 |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
| | A127093 | | | | | 1 |
| | A127093 | | | | | 1 |
| | A127093 | | | | | 1 |
| | A127093 | | | | | 1 |
| D | A127093 | | | | | 1 |
| I |---------|-----|-------|---------|-----------|-------------|
| V | A127093 | | | | 1 | 1 2 |
| I | A127093 | | | | 1 | 1 2 |
| S | A127093 | | | | 1 | 1 2 |
| O |---------|-----|-------|---------|-----------|-------------|
| R | A127093 | | | 1 | 1 2 | 1 0 3 |
| S | A127093 | | | 1 | 1 2 | 1 0 3 |
| |---------|-----|-------|---------|-----------|-------------|
| | A127093 | | 1 | 1 2 | 1 0 3 | 1 2 0 4 |
| |---------|-----|-------|---------|-----------|-------------|
| | A127093 | 1 | 1 2 | 1 0 3 | 1 2 0 4 | 1 0 0 0 5 |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
| | A138785 | 1 | 2 2 | 4 2 3 | 7 6 3 4 | 12 8 6 4 5 |
| | | = | = = | = = = | = = = = | = = = = = |
| L | A002260 | 1 | 1 2 | 1 2 3 | 1 2 3 4 | 1 2 3 4 5 |
| I | | * | * * | * * * | * * * * | * * * * * |
| N | A066633 | 1 | 2 1 | 4 1 1 | 7 3 1 1 | 12 4 2 1 1 |
| K | | | | |\| | |\|\| | |\|\|\| | |\|\|\|\| |
| | A181187 | 1 | 3 1 | 6 2 1 | 12 5 2 1 | 20 8 4 2 1 |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
| P | | 1 | 1 1 | 1 1 1 | 1 1 1 1 | 1 1 1 1 1 |
| A | | | 2 | 2 1 | 2 1 1 | 2 1 1 1 |
| R | | | | 3 | 3 1 | 3 1 1 |
| T | | | | | 2 2 | 2 2 1 |
| I | | | | | 4 | 4 1 |
| T | | | | | | 3 2 |
| I | | | | | | 5 |
| O | | | | | | |
| N | | | | | | |
| S | | | | | | |
|---|---------|-----|-------|---------|-----------|-------------|
.
The upper zone is a condensed version of the "divisors" zone.
The above table is the table of A340011 upside down.
For more information about the correspondence divisor/part see A338156. (End)
Cf.
A000005,
A000041,
A000203,
A027750,
A051731,
A066186,
A127093,
A138785,
A221529,
A221650,
A237593,
A336811,
A336812,
A338156,
A340011,
A340031,
A340032,
A340035,
A340056.
-
A221649row[n_]:=Flatten[Table[If[Divisible[j,k],PartitionsP[n-j]k,0],{j,n},{k,j}]];Array[A221649row,10] (* Paolo Xausa, Sep 26 2023 *)
a(18)-a(19) and a(28)-a(29) corrected by
Paolo Xausa, Sep 26 2023
A206561
Triangle read by rows: T(n,k) = total sum of parts >= k in all partitions of n.
Original entry on oeis.org
1, 4, 2, 9, 5, 3, 20, 13, 7, 4, 35, 23, 15, 9, 5, 66, 47, 31, 19, 11, 6, 105, 75, 53, 35, 23, 13, 7, 176, 131, 93, 66, 42, 27, 15, 8, 270, 203, 151, 106, 74, 49, 31, 17, 9, 420, 323, 241, 178, 126, 86, 56, 35, 19, 10, 616, 477, 365, 272, 200, 140, 98, 63, 39, 21, 11
Offset: 1
Triangle begins:
1;
4, 2;
9, 5, 3;
20, 13, 7, 4;
35, 23, 15, 9, 5;
66, 47, 31, 19, 11, 6;
105, 75, 53, 35, 23, 13, 7;
...
-
Table[With[{s = IntegerPartitions[n]}, Table[Total@ Flatten@ Map[Select[#, # >= k &] &, s], {k, n}]], {n, 11}] // Flatten (* Michael De Vlieger, Mar 19 2018 *)
A096541
Number of parts unequal to 1 in all partitions of the integer n. Also the difference between the labeled and the unlabeled case of one-element transitions from the partitions of n to the partitions of n+1.
Original entry on oeis.org
0, 0, 1, 2, 5, 8, 16, 24, 41, 61, 95, 136, 204, 284, 407, 560, 779, 1050, 1432, 1901, 2543, 3338, 4393, 5698, 7411, 9513, 12226, 15562, 19803, 24993, 31538, 39506, 49456, 61546, 76499, 94603, 116858, 143679, 176431, 215802, 263576, 320796, 389900
Offset: 0
The partitions of n=5 are [11111], [1112], [113], [122], [23], [14], [5] and they contain 0 + 1 + 1 + 2 + 2 + 1 + 1 = 8 = A096541(5) parts unequal to 1.
-
main := proc(n::integer) local a,ndxp,ndxprt,ListOfPartitions,iverbose; with(combinat): ListOfPartitions:=partition(n); a:=0; for ndxp from 1 to nops(ListOfPartitions) do for ndxprt from 1 to nops(ListOfPartitions[ndxp]) do if op(ndxprt,ListOfPartitions[ndxp]) <> 1 then a := a + 1; fi; end do; end do; print("n, a(n):",n,a); end proc;
# second Maple program:
b:= proc(n, i) option remember; local f, g;
if n=0 or i=1 then [1, 0]
else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i));
[f[1]+g[1], f[2]+g[2]+g[1]]
fi
end:
a:= n-> b(n, n)[2]:
seq(a(n), n=0..60); # Alois P. Heinz, Apr 04 2012
-
f[n_] := Block[{l = Sort[ Flatten[ IntegerPartitions[n]]]}, Length[l] - Count[l, 1]]; Table[ f[n], {n, 0, 20}] (* Robert G. Wilson v, Jun 30 2004 *)
a[n_] := Sum[(DivisorSigma[0, k] - 1)*PartitionsP[n - k], {k, 1, n}]; Table[a[n], {n, 0, 42}] (* Jean-François Alcover, Jan 14 2013, after Vladeta Jovovic *)
-
a(n)=sum(k=1,n,(numdiv(k)-1)*numbpart(n-k)) \\ Charles R Greathouse IV, Jan 14 2013
A208482
Triangle read by rows: T(n,k) = sum of positive k-th ranks of all partitions of n.
Original entry on oeis.org
0, 1, 1, 2, 1, 1, 4, 1, 2, 1, 7, 1, 3, 2, 1, 12, 2, 5, 4, 2, 1, 18, 3, 6, 6, 4, 2, 1, 29, 6, 9, 10, 7, 4, 2, 1, 42, 9, 11, 13, 11, 7, 4, 2, 1, 63, 16, 15, 19, 17, 12, 7, 4, 2, 1, 89, 24, 18, 25, 24, 18, 12, 7, 4, 2, 1, 128, 39, 24, 36, 34, 28, 19, 12, 7, 4, 2, 1
Offset: 1
For n = 4 the partitions of 4 and the four types of ranks of the partitions of 4 are
----------------------------------------------------------
Partitions First Second Third Fourth
of 4 rank rank rank rank
----------------------------------------------------------
4 4-1 = 3 0-1 = -1 0-1 = -1 0-1 = -1
3+1 3-2 = 1 1-1 = 0 0-1 = -1 0-0 = 0
2+2 2-2 = 0 2-2 = 0 0-0 = 0 0-0 = 0
2+1+1 2-3 = -1 1-1 = 0 1-0 = 1 0-0 = 0
1+1+1+1 1-4 = -3 1-0 = 1 1-0 = 1 1-0 = 1
----------------------------------------------------------
The sums of positive k-th ranks of the partitions of 4 are 4, 1, 2, 1 so row 4 lists 4, 1, 2, 1.
Triangle begins:
0;
1, 1;
2, 1, 1;
4, 1, 2, 1;
7, 1, 3, 2, 1;
12, 2, 5, 4, 2, 1;
18, 3, 6, 6, 4, 2, 1;
29, 6, 9, 10, 7, 4, 2, 1;
42, 9, 11, 13, 11, 7, 4, 2, 1;
63, 16, 15, 19, 17, 12, 7, 4, 2, 1;
89, 24, 18, 25, 24, 18, 12, 7, 4, 2, 1;
128, 39, 24, 36, 34, 28, 19, 12, 7, 4, 2, 1;
Terms a(1)-a(22) confirmed and additional terms added by
John W. Layman, Mar 10 2012
A210952
Triangle read by rows: T(n,k) = sum of all parts of the k-th column of the partitions of n but with the partitions aligned to the right margin.
Original entry on oeis.org
1, 1, 3, 1, 3, 5, 1, 3, 7, 9, 1, 3, 7, 12, 12, 1, 3, 7, 14, 21, 20, 1, 3, 7, 14, 24, 31, 25, 1, 3, 7, 14, 26, 40, 47, 38, 1, 3, 7, 14, 26, 43, 61, 66, 49, 1, 3, 7, 14, 26, 45, 70, 92, 93, 69, 1, 3, 7, 14, 26, 45, 73, 106, 130, 124, 87, 1, 3, 7, 14
Offset: 1
For n = 6 the illustration shows the partitions of 6 aligned to the right margin and below the sums of the columns:
.
. 6
. 3 + 3
. 4 + 2
. 2 + 2 + 2
. 5 + 1
. 3 + 2 + 1
. 4 + 1 + 1
. 2 + 2 + 1 + 1
. 3 + 1 + 1 + 1
. 2 + 1 + 1 + 1 + 1
. 1 + 1 + 1 + 1 + 1 + 1
-------------------------
. 1, 3, 7, 14, 21, 20
.
So row 6 lists 1, 3, 7, 14, 21, 20.
Triangle begins:
1;
1, 3;
1, 3, 5;
1, 3, 7, 9;
1, 3, 7, 12, 12;
1, 3, 7, 14, 21, 20;
1, 3, 7, 14, 24, 31, 25;
1, 3, 7, 14, 26, 40, 47, 38;
1, 3, 7, 14, 26, 43, 61, 66, 49;
1, 3, 7, 14, 26, 45, 70, 92, 93, 69:
A340031
Irregular triangle read by rows T(n,k) in which row n lists n blocks, where the m-th block consists of A000041(m-1) copies of the j-th row of triangle A127093, where j = n - m + 1 and 1 <= m <= n.
Original entry on oeis.org
1, 1, 2, 1, 1, 0, 3, 1, 2, 1, 1, 1, 2, 0, 4, 1, 0, 3, 1, 2, 1, 2, 1, 1, 1, 1, 0, 0, 0, 5, 1, 2, 0, 4, 1, 0, 3, 1, 0, 3, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 3, 0, 0, 6, 1, 0, 0, 0, 5, 1, 2, 0, 4, 1, 2, 0, 4, 1, 0, 3, 1, 0, 3, 1, 0, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Triangle begins:
[1];
[1,2], [1];
[1,0,3], [1,2], [1], [1];
[1,2,0,4], [1,0,3], [1,2], [1,2], [1], [1], [1];
[1,0,0,0,5],[1,2,0,4],[1,0,3],[1,0,3],[1,2],[1,2],[1,2],[1],[1],[1],[1],[1];
[...
Written as an irregular tetrahedron the first five slices are:
[1],
-------
[1, 2],
[1],
----------
[1, 0, 3],
[1, 2],
[1],
[1];
-------------
[1, 2, 0, 4],
[1, 0, 3],
[1, 2],
[1, 2],
[1],
[1],
[1];
----------------
[1, 0, 0, 0, 5],
[1, 2, 0, 4],
[1, 0, 3],
[1, 0, 3],
[1, 2],
[1, 2],
[1, 2],
[1],
[1],
[1],
[1],
[1];
.
The following table formed by three zones shows the correspondence between divisors and parts (n = 1..5):
.
|---|---------|-----|-------|---------|-----------|-------------|
| n | | 1 | 2 | 3 | 4 | 5 |
|---|---------|-----|-------|---------|-----------|-------------|
| P | | | | | | |
| A | | | | | | |
| R | | | | | | |
| T | | | | | | 5 |
| I | | | | | | 3 2 |
| T | | | | | 4 | 4 1 |
| I | | | | | 2 2 | 2 2 1 |
| O | | | | 3 | 3 1 | 3 1 1 |
| N | | | 2 | 2 1 | 2 1 1 | 2 1 1 1 |
| S | | 1 | 1 1 | 1 1 1 | 1 1 1 1 | 1 1 1 1 1 |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
| | A181187 | 1 | 3 1 | 6 2 1 | 12 5 2 1 | 20 8 4 2 1 |
| L | | | | |/| | |/|/| | |/|/|/| | |/|/|/|/| |
| I | A066633 | 1 | 2 1 | 4 1 1 | 7 3 1 1 | 12 4 2 1 1 |
| N | | * | * * | * * * | * * * * | * * * * * |
| K | A002260 | 1 | 1 2 | 1 2 3 | 1 2 3 4 | 1 2 3 4 5 |
| | | = | = = | = = = | = = = = | = = = = = |
| | A138785 | 1 | 2 2 | 4 2 3 | 7 6 3 4 | 12 8 6 4 5 |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
| | A127093 | 1 | 1 2 | 1 0 3 | 1 2 0 4 | 1 0 0 0 5 |
| |---------|-----|-------|---------|-----------|-------------|
| | A127093 | | 1 | 1 2 | 1 0 3 | 1 2 0 4 |
| |---------|-----|-------|---------|-----------|-------------|
| D | A127093 | | | 1 | 1 2 | 1 0 3 |
| I | A127093 | | | 1 | 1 2 | 1 0 3 |
| V |---------|-----|-------|---------|-----------|-------------|
| I | A127093 | | | | 1 | 1 2 |
| S | A127093 | | | | 1 | 1 2 |
| O | A127093 | | | | 1 | 1 2 |
| R |---------|-----|-------|---------|-----------|-------------|
| S | A127093 | | | | | 1 |
| | A127093 | | | | | 1 |
| | A127093 | | | | | 1 |
| | A127093 | | | | | 1 |
| | A127093 | | | | | 1 |
|---|---------|-----|-------|---------|-----------|-------------|
.
The table is essentially the same table of A338156 but here, in the lower zone, every row is A127093 instead of A027750.
.
Cf.
A000070,
A000041,
A002260,
A026792,
A027750,
A058399,
A066633,
A127093,
A135010,
A138121,
A138785,
A176206,
A181187,
A182703,
A207031,
A207383,
A211992,
A221529,
A221530,
A221531,
A221649,
A221650,
A237593,
A245095,
A302246,
A302247,
A336811,
A337209,
A339106,
A339258,
A339278,
A339304,
A340011,
A340032,
A340035,
A340061.
Comments