cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 28 results. Next

A270143 a(n) = Sum_{k=0..n} (-1)^(k+1) * k * A000041(n-k).

Original entry on oeis.org

0, 1, -1, 3, -2, 6, -3, 11, -4, 19, -4, 31, -2, 50, 3, 79, 15, 122, 38, 187, 78, 284, 146, 426, 257, 635, 431, 939, 701, 1377, 1110, 2007, 1718, 2906, 2613, 4178, 3914, 5971, 5781, 8482, 8440, 11976, 12191, 16816, 17438, 23483, 24730, 32615, 34794, 45070
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 12 2016

Keywords

Comments

Convolution of A000041 and A181983.

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^(n-k+1)*PartitionsP[k]*(n-k), {k, 0, n}], {n, 0, 100}]
    nmax = 100; CoefficientList[Series[x/(1 + x)^2 * Product[1/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k+1) * (n-k) * A000041(k).
a(n) ~ A000041(n)/4.
a(n) ~ exp(Pi*sqrt(2*n/3)) / (16*n*sqrt(3)).
G.f.: x/(1+x)^2 * Product_{k>=1} 1/(1-x^k).

A270144 a(n) = Sum_{k=0..n} (-1)^(k+1) * k * A000009(n-k).

Original entry on oeis.org

0, 1, -1, 2, -1, 2, 0, 2, 1, 2, 3, 2, 5, 3, 7, 5, 10, 7, 14, 11, 18, 17, 24, 24, 32, 34, 42, 47, 56, 63, 74, 85, 96, 113, 126, 147, 165, 191, 213, 247, 275, 316, 353, 404, 449, 514, 571, 648, 723, 816, 909, 1024, 1140, 1278, 1424, 1592, 1770, 1976, 2195, 2442
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 12 2016

Keywords

Comments

Convolution of A000009 and A181983.

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^(n-k+1)*PartitionsQ[k]*(n-k), {k, 0, n}], {n, 0, 100}]
    nmax = 100; CoefficientList[Series[x/(1 + x)^2 * Product[(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k+1) * (n-k) * A000009(k).
a(n) ~ A000009(n)/4.
a(n) ~ exp(Pi*sqrt(n/3)) / (16*3^(1/4)*n^(3/4)).
G.f.: x/(1+x)^2 * Product_{k>=1} (1+x^k).

A274703 Exponential generating function 1/M_{3}(z^3) where M_{n}(z) is the n-th Mittag-Leffler function, nonzero coefficients only.

Original entry on oeis.org

1, -4, 133, -15130, 4101799, -2177360656, 1999963458217, -2919514870785766, 6365117686550339275, -19765974970578036695068, 84220118333781814726917709, -477722110504065444764182065202, 3518554409906597166261453268226671, -32952557456293494405944914420304822440
Offset: 0

Views

Author

Peter Luschny, Jul 03 2016

Keywords

Comments

For references see also A274705 which is the main entry for this sequence of sequences.

Crossrefs

Cf. A181983 (n=1), A009843 (n=2), A274704 (n=4), A274705 (array).

Programs

  • Maple
    s := series(z/((exp(z)+2*exp(-z/2)*cos(z*3^(1/2)/2))/3),z,60):
    seq((n*3+1)!*coeff(s,z,n*3+1), n=0..13);
  • Mathematica
    c = CoefficientList[Series[1/MittagLefflerE[3,z^3],{z,0,15*3}],z];
    Table[Factorial[3*n+1]*c[[3*n+1]], {n,0,13}]

Formula

E.g.f. (nonzero coefficients): z/((exp(z)+2*exp(-z/2)*cos(z*3^(1/2)/2))/3).
For n >= 1, a(n) = -Sum_{k=0..n-1} a(k) binomial(3n+1,3k+1). - Robert Israel, Jul 03 2016

A274704 Exponential generating function 1/M_{4}(z^4) where M_{n}(z) is the n-th Mittag-Leffler function, nonzero coefficients only.

Original entry on oeis.org

1, -5, 621, -437593, 1026405753, -6054175060941, 75477454065058725, -1766732850877953050849, 71248914440011028226682737, -4637564239713542128355021380117, 462852368857623061805761137170608989, -67965094887205237792816627191801312013545
Offset: 0

Views

Author

Peter Luschny, Jul 03 2016

Keywords

Crossrefs

Cf. A181983 (n=1), A009843 (n=2), A274703 (n=3), A274705 (array).

Programs

  • Maple
    s := series(2*z/(cosh(z)+cos(z)),z,60):
    seq((4*n+1)!*coeff(s,z,4*n+1),n=0..11);
  • Mathematica
    c = CoefficientList[Series[1/MittagLefflerE[4, z^4], {z, 0, 15*4}], z];
    Table[Factorial[4*n+1]*c[[4*n+1]], {n, 0, 12}]

Formula

E.g.f. (nonzero coefficients): 2*z/(cosh(z)+cos(z)).
For n >= 1, a(n) = - Sum_{k=0..n-1} a(k)*binomial(4*k+1,4*n+1). - Robert Israel, Jul 04 2016

A374157 a(n) = (-1)^floor(n/2)*n.

Original entry on oeis.org

0, 1, -2, -3, 4, 5, -6, -7, 8, 9, -10, -11, 12, 13, -14, -15, 16, 17, -18, -19, 20, 21, -22, -23, 24, 25, -26, -27, 28, 29, -30, -31, 32, 33, -34, -35, 36, 37, -38, -39, 40, 41, -42, -43, 44, 45, -46, -47, 48, 49, -50, -51, 52, 53, -54, -55, 56, 57, -58, -59
Offset: 0

Views

Author

Peter Luschny, Jun 30 2024

Keywords

Comments

For all odd numbers n (A005408) and all whole numbers z (A001057) K(z/n) = K(a(n)/z), where K(z/n) denotes the Kronecker symbol (A372728). This fact is equivalent to the law of quadratic reciprocity and its first and second supplement.

Crossrefs

Programs

  • Maple
    a := n -> (-1)^iquo(n, 2)*n: seq(a(n), n = 0..59);
  • Mathematica
    Array[(-1)^Floor[#/2]*# &, 60, 0] (* Michael De Vlieger, Jun 30 2024 *)
  • PARI
    a(n) = (-1)^(n\2) * n; \\ Amiram Eldar, Jun 30 2024
  • Python
    def A374157(n): return (-1)**(n // 2)*n
    
  • Python
    def A374157(n): return -n if n&2 else n # Chai Wah Wu, Jun 30 2024
    

Formula

Sum_{n>=1} 1/a(n) = Pi/4 - log(2)/2 = A196521.
a(n) = [x^n] -x*(x^2 + 2*x - 1)/(x^2 + 1)^2.
a(n) = n! * [x^n] x*(cos(x) - sin(x)). - Stefano Spezia, Jun 30 2024
a(n) = n*A057077(n). - Michel Marcus, Jul 01 2024

A386789 Triangle read by rows: T(n, k) = binomial(n - 1, k - 1)*binomial(n + k, k).

Original entry on oeis.org

1, 0, 2, 0, 3, 6, 0, 4, 20, 20, 0, 5, 45, 105, 70, 0, 6, 84, 336, 504, 252, 0, 7, 140, 840, 2100, 2310, 924, 0, 8, 216, 1800, 6600, 11880, 10296, 3432, 0, 9, 315, 3465, 17325, 45045, 63063, 45045, 12870, 0, 10, 440, 6160, 40040, 140140, 280280, 320320, 194480, 48620
Offset: 0

Views

Author

Peter Luschny, Aug 06 2025

Keywords

Examples

			Triangle begins:
  [0] 1;
  [1] 0, 2;
  [2] 0, 3,   6;
  [3] 0, 4,  20,   20;
  [4] 0, 5,  45,  105,   70;
  [5] 0, 6,  84,  336,  504,   252;
  [6] 0, 7, 140,  840, 2100,  2310,   924;
  [7] 0, 8, 216, 1800, 6600, 11880, 10296, 3432;
.
Seen as an array A(n, k) = binomial(n + k - 1, n)*binomial(n + 2*k, k):
  [0] 1, 2,   6,   20,    70,    252,     924, ... [A000984]
  [1] 0, 3,  20,  105,   504,   2310,   10296, ... [A000917]
  [2] 0, 4,  45,  336,  2100,  11880,   63063, ...
  [3] 0, 5,  84,  840,  6600,  45045,  280280, ...
  [4] 0, 6, 140, 1800, 17325, 140140, 1009008, ...
  [5] 0, 7, 216, 3465, 40040, 378378, 3118752, ...
  [6] 0, 8, 315, 6160, 84084, 917280, 8576568, ...
		

Crossrefs

Cf. A176479 (row sums), A000984 (main diagonal), A181983 (alternating row sums), A386876 (central terms).

Programs

  • Maple
    T := (n, k) -> binomial(n - 1, k - 1)*binomial(n + k, k): seq(seq(T(n, k), k = 0..n), n = 0..9);
  • Mathematica
    A386789[n_, k_] := Binomial[n - 1, k - 1]*Binomial[n + k, k];
    Table[A386789[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Aug 06 2025 *)

Formula

A357367(n, k) = n!*T(n, k).

A030640 Discriminant of lattice A_n of determinant n+1.

Original entry on oeis.org

1, 1, -3, -2, 5, 3, -7, -4, 9, 5, -11, -6, 13, 7, -15, -8, 17, 9, -19, -10, 21, 11, -23, -12, 25, 13, -27, -14, 29, 15, -31, -16, 33, 17, -35, -18, 37, 19, -39, -20, 41, 21, -43, -22, 45, 23, -47, -24, 49, 25, -51, -26, 53, 27, -55, -28, 57, 29, -59
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + x - 3*x^2 - 2*x^3 + 5*x^4 + 3*x^5 - 7*x^6 - 4*x^7 + 8*x^9 + 5*x^10 + ...
		

References

  • J. H. Conway, The Sensual Quadratic Form, Mathematical Association of America, 1997, p. 4.
  • G. L. Watson, Integral Quadratic Forms, Cambridge University Press, p. 2.

Crossrefs

Cf. A026741 is unsigned version.

Programs

  • Mathematica
    CoefficientList[Series[(1+x-x^2)/(1+x^2)^2,{x,0,60}],x] (* or *) LinearRecurrence[{0,-2,0,-1},{1,1,-3,-2},70]
    a[ n_] := With[{m = n + 1}, m I^m / If[ Mod[ m, 2] == 1, I, -2]]; (* Michael Somos, Jun 11 2013 *)
  • PARI
    {a(n) = if( n==-1, 0, (-1)^(n\2) * (n+1) / gcd(n+1, 2))}; /* Michael Somos, Jun 15 2005 */
    
  • Python
    def A030640(n): return (-(n+1>>1) if n&2 else n+1>>1) if n&1 else (-n-1 if n&2 else n+1) # Chai Wah Wu, Aug 05 2024

Formula

a(2n) = (-1)^n*(2*n+1), a(2n+1) = (-1)^n*(n+1). Or (apart from signs and with offset 1), a(n) = n, n odd; n/2, n even.
G.f.: (1+x-x^2)/(1+x^2)^2. - Len Smiley
a(-2-n) = (-1)^n * a(n). - Michael Somos, Jun 15 2005
a(n) = -2*a(n-2) - a(n-4); a(0)=1, a(1)=1, a(2)=-3, a(3)=-2. - Harvey P. Dale, Dec 02 2011
a(n) = (-1)^floor(n/2)*A026741(n+1).
a(2*n) = A157142(n). a(2*n - 1) = A181983(n). - Michael Somos, Feb 22 2016

A131738 a(0) = 0. a(n) = (n+1)*(-1)^n, n>0 .

Original entry on oeis.org

0, -2, 3, -4, 5, -6, 7, -8, 9, -10, 11, -12, 13, -14, 15, -16, 17, -18, 19, -20, 21, -22, 23, -24, 25, -26, 27, -28, 29, -30, 31, -32, 33, -34, 35, -36, 37, -38, 39, -40, 41, -42, 43, -44, 45, -46, 47, -48, 49, -50, 51, -52, 53, -54, 55, -56, 57, -58, 59, -60, 61, -62, 63, -64, 65, -66, 67, -68, 69, -70, 71, -72, 73, -74, 75
Offset: 0

Views

Author

Paul Curtz, Sep 19 2007

Keywords

Comments

Also the main diagonal of A138057.

Crossrefs

Cf. A105811.
Cf. A181983 (main entry).

Programs

Formula

From G. C. Greubel, Nov 02 2017: (Start)
a(n) = -2*a(n-1) - a(n-2).
G.f.: -x*(x+2)/(1+x)^2.
E.g.f.: (1 - x - exp(x))*exp(-x). (End)

Extensions

Edited by R. J. Mathar, Jul 07 2008

A274705 Rectangular array read by ascending antidiagonals. Row n has the exponential generating function 1/M_{n}(z^n) where M_{n}(z) is the n-th Mittag-Leffler function, nonzero coefficients only, for n>=1.

Original entry on oeis.org

1, 1, -2, 1, -3, 3, 1, -4, 25, -4, 1, -5, 133, -427, 5, 1, -6, 621, -15130, 12465, -6, 1, -7, 2761, -437593, 4101799, -555731, 7, 1, -8, 11999, -12012016, 1026405753, -2177360656, 35135945, -8, 1, -9, 51465, -325204171, 243458990271, -6054175060941, 1999963458217, -2990414715, 9
Offset: 0

Views

Author

Peter Luschny, Jul 03 2016

Keywords

Examples

			Array starts:
n=1: {1, -2,  3, -4, 5, -6, 7, -8,  9, -10,  11,...} [A181983]
n=2: {1, -3, 25, -427, 12465, -555731, 35135945,...} [A009843]
n=3: {1, -4, 133, -15130, 4101799,  -2177360656,...} [A274703]
n=4: {1, -5, 621, -437593, 1026405753, -6054175060941,...} [A274704]
n=5: {1, -6, 2761, -12012016, 243458990271, ...}
		

Crossrefs

Programs

  • Maple
    ibn := proc(m, k) local w, om, t;
    w := exp(2*Pi*I/m); om := m*x/add(exp(x*w^j), j=0..m-1);
    t := series(om, x, k+m); simplify(k!*coeff(t,x,k)) end:
    seq(seq(ibn(n-k+2, n*k-n-k^2+3*k-1), k=1..n+1),n=0..8);
  • Mathematica
    A274705Row[m_] := Module[{c}, c = CoefficientList[Series[1/MittagLefflerE[m,z^m],
    {z,0,12*m}],z]; Table[Factorial[m*n+1]*c[[m*n+1]], {n,0,9}] ]
    Table[Print[A274705Row[n]], {n,1,6}]
  • Sage
    def ibn(m, k):
        w = exp(2*pi*I/m)
        om = m*x/sum(exp(x*w^j) for j in range(m))
        t = taylor(om, x, 0, k + m)
        return simplify(factorial(k)*t.list()[k])
    def A274705_row(m, size):
        return [ibn(m, k) for k in range(1, m*size, m)]
    for n in (1..4): print(A274705_row(n, 8))

Formula

Recurrence for the m-th row: R(m, n) = -Sum_{k=0..n-1} binomial(m*n+1, m*k+1)*R(m, k) for n >= 1. See Carlitz (1.3).

A324221 Number of connected 2n-regular loopless multigraphs with five nodes.

Original entry on oeis.org

0, 1, 6, 15, 36, 72, 139, 244, 414, 663, 1030, 1540, 2247, 3187, 4433, 6036, 8088, 10658, 13861, 17785, 22571, 28329, 35227, 43401, 53049, 64333, 77485, 92697, 110235, 130324, 153268, 179326, 208843, 242115, 279529, 321422, 368226, 420319, 478182, 542238, 613017
Offset: 0

Views

Author

Natan Arie Consigli, Feb 18 2019

Keywords

Comments

There are no (2n+1)-regular multigraphs satisfying the condition above.
Multigraphs are loopless.
Initial terms computed with 'Nauty and Traces'.

Crossrefs

Row n=5 of A328682.

Programs

  • nauty
    for ((n=0;n<76;n=n+2)); do geng -c -d1 5 -q | multig -m${n} -u; done

Formula

Conjectures from Colin Barker, Feb 18 2019: (Start)
G.f.: x*(1 + 3*x - x^2 + 4*x^3 - x^4 + 6*x^5 + 4*x^7 - x^8 - x^9 + x^10) / ((1 - x)^6*(1 + x)^2*(1 + x^2)*(1 + x + x^2)).
a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4) - 2*a(n-5) + 4*a(n-6) - 2*a(n-7) + a(n-8) - a(n-9) - 2*a(n-10) + 3*a(n-11) - a(n-12) for n>11.
(End)
Equivalent conjecture: 1152*a(n) = 6*n^5 + 30*n^4 + 220*n^3 + 540*n^2 + 1143*n - 353 + 72*A056594(n) + 128*A049347(n) + 153*A181983(n+1). - R. J. Mathar, Mar 09 2019

Extensions

a(28)-a(30) from Andrew Howroyd, Mar 18 2020
Previous Showing 11-20 of 28 results. Next