cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 99 results. Next

A212010 Triangle read by rows: T(n,k) = total number of parts in the last k shells of n.

Original entry on oeis.org

1, 2, 3, 3, 5, 6, 6, 9, 11, 12, 8, 14, 17, 19, 20, 15, 23, 29, 32, 34, 35, 19, 34, 42, 48, 51, 53, 54, 32, 51, 66, 74, 80, 83, 85, 86, 42, 74, 93, 108, 116, 122, 125, 127, 128, 64, 106, 138, 157, 172, 180, 186, 189, 191, 192, 83, 147, 189, 221, 240
Offset: 1

Views

Author

Omar E. Pol, Apr 26 2012

Keywords

Comments

The set of partitions of n contains n shells (see A135010). Let m and n be two positive integers such that m <= n. It appears that in any set formed by m connected shells, or m disconnected shells, or a mixture of both, the sum of all parts of the j-th column equals the total number of parts >= j in the same set (see example). More generally it appears that any of these sets has the same properties mentioned in A206563 and A207031.
It appears that the last k shells of n contain p(n-k) parts of size k, where p(n) = A000041(n). See also A182703.

Examples

			For n = 5 the illustration shows five sets containing the last k shells of 5 and below we can see that the sum of all parts of the first column equals the total number of parts in each set:
--------------------------------------------------------
.  S{5}       S{4-5}     S{3-5}     S{2-5}     S{1-5}
--------------------------------------------------------
.  The        Last       Last       Last       The
.  last       two        three      four       five
.  shell      shells     shells     shells     shells
.  of 5       of 5       of 5       of 5       of 5
--------------------------------------------------------
.
.  5          5          5          5          5
.  3+2        3+2        3+2        3+2        3+2
.    1        4+1        4+1        4+1        4+1
.      1      2+2+1      2+2+1      2+2+1      2+2+1
.      1        1+1      3+1+1      3+1+1      3+1+1
.        1        1+1      1+1+1    2+1+1+1    2+1+1+1
.          1        1+1      1+1+1    1+1+1+1  1+1+1+1+1
. ---------- ---------- ---------- ---------- ----------
.  8         14         17         19         20
.
So row 5 lists 8, 14, 17, 19, 20.
.
Triangle begins:
1;
2,    3;
3,    5,   6;
6,    9,  11,  12;
8,   14,  17,  19,  20;
15,  23,  29,  32,  34,  35;
19,  34,  42,  48,  51,  53,  54;
32,  51,  66,  74,  80,  83,  85,  86;
42,  74,  93, 108, 116, 122, 125, 127, 128;
64, 106, 138, 157, 172, 180, 186, 189, 191, 192;
		

Crossrefs

Mirror of triangle A212000. Column 1 is A138137. Right border is A006128.

Formula

T(n,k) = A006128(n) - A006128(n-k).
T(n,k) = Sum_{j=n-k+1..n} A138137(j).

A220504 Triangle read by rows: T(n,k) is the total number of appearances of k as the smallest part in all partitions of n.

Original entry on oeis.org

1, 2, 1, 4, 0, 1, 7, 2, 0, 1, 12, 1, 0, 0, 1, 19, 4, 2, 0, 0, 1, 30, 3, 1, 0, 0, 0, 1, 45, 8, 1, 2, 0, 0, 0, 1, 67, 7, 4, 1, 0, 0, 0, 0, 1, 97, 15, 3, 1, 2, 0, 0, 0, 0, 1, 139, 15, 4, 1, 1, 0, 0, 0, 0, 0, 1, 195, 27, 8, 4, 1, 2, 0, 0, 0, 0, 0, 1, 272, 29, 8, 3, 1, 1, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Omar E. Pol, Jan 19 2013

Keywords

Comments

In other words, T(n,k) is the total number of appearances of k in all partitions of n whose smallest part is k.
The sum of row n equals spt(n), the smallest part partition function (see A092269).
T(n,k) is also the sum of row k in the slice n of tetrahedron A209314.

Examples

			Triangle begins:
    1;
    2,  1;
    4,  0, 1;
    7,  2, 0, 1;
   12,  1, 0, 0, 1;
   19,  4, 2, 0, 0, 1;
   30,  3, 1, 0, 0, 0, 1;
   45,  8, 1, 2, 0, 0, 0, 1;
   67,  7, 4, 1, 0, 0, 0, 0, 1;
   97, 15, 3, 1, 2, 0, 0, 0, 0, 1;
  139, 15, 4, 1, 1, 0, 0, 0, 0, 0, 1;
  195, 27, 8, 4, 1, 2, 0, 0, 0, 0, 0, 1;
  272, 29, 8, 3, 1, 1, 0, 0, 0, 0, 0, 0, 1;
  ...
The partitions of 6 with the smallest part in brackets are
..........................
.                      [6]
..........................
.                  [3]+[3]
..........................
.                   4 +[2]
.              [2]+[2]+[2]
..........................
.                   5 +[1]
.               3 + 2 +[1]
.               4 +[1]+[1]
.           2 + 2 +[1]+[1]
.           3 +[1]+[1]+[1]
.       2 +[1]+[1]+[1]+[1]
.  [1]+[1]+[1]+[1]+[1]+[1]
..........................
There are 19 smallest parts of size 1. Also there are four smallest parts of size 2. Also there are two smallest parts of size 3. There are no smallest part of size 4 or 5. Finally there is only one smallest part of size 6. So row 6 gives 19, 4, 2, 0, 0, 1. The sum of row 6 is 19+4+2+0+0+1 = A092269(6) = 26.
		

Crossrefs

Columns 1-3: A000070, A087787, A174455.
Row sums give A092269.

Programs

  • Maple
    b:= proc(n, i) option remember; local j, r; if n=0 or i<1 then 0
          else `if`(irem(n, i, 'r')=0, [0$(i-1), r], []); for j from 0
          to n/i do zip((x, y)->x+y, %, [b(n-i*j, i-1)], 0) od; %[] fi
        end:
    T:= n-> b(n, n):
    seq(T(n), n=1..20);  # Alois P. Heinz, Jan 20 2013
  • Mathematica
    b[n_, i_] := b[n, i] = Module[{j, q, r, pc}, If [n == 0 || i<1, 0, {q, r} = QuotientRemainder[n, i]; pc = If[r == 0, Append[Array[0&, i-1], q], {}]; For[j = 0, j <= n/i, j++, pc = Plus @@ PadRight[{pc, b[n-i*j, i-1]}]]; pc]]; T[n_] := b[n, n]; Table[T[n], {n, 1, 20}] // Flatten (* Jean-François Alcover, Jan 30 2014, after Alois P. Heinz *)

A340057 Irregular triangle read by rows T(n,k) in which row n lists n blocks, where the block m consists of the divisors of m multiplied by A000041(n-m), with 1 <= m <= n.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 2, 1, 3, 3, 2, 4, 1, 3, 1, 2, 4, 5, 3, 6, 2, 6, 1, 2, 4, 1, 5, 7, 5, 10, 3, 9, 2, 4, 8, 1, 5, 1, 2, 3, 6, 11, 7, 14, 5, 15, 3, 6, 12, 2, 10, 1, 2, 3, 6, 1, 7, 15, 11, 22, 7, 21, 5, 10, 20, 3, 15, 2, 4, 6, 12, 1, 7, 1, 2, 4, 8, 22, 15, 30, 11, 33, 7, 14, 28, 5, 25
Offset: 1

Views

Author

Omar E. Pol, Dec 27 2020

Keywords

Comments

This triangle is a condensed version of the more irregular triangle A340035.
For further information about the correspondence divisor/part see A338156.

Examples

			Triangle begins:
  [1];
  [1],  [1, 2];
  [2],  [1, 2],  [1, 3];
  [3],  [2, 4],  [1, 3],  [1, 2, 4];
  [5],  [3, 6],  [2, 6],  [1, 2, 4],  [1, 5];
  [7],  [5, 10], [3, 9],  [2, 4, 8],  [1, 5],  [1, 2, 3, 6];
  [11], [7, 14], [5, 15], [3, 6, 12], [2, 10], [1, 2, 3, 6], [1, 7];
  ...
Row sums gives A066186.
Written as a tetrahedrons the first five slices are:
  --
  1;
  --
  1,
  1, 2;
  -----
  2,
  1, 2,
  1, 3;
  -----
  3,
  2, 4,
  1, 3,
  1, 2, 4;
  --------
  5,
  3, 6,
  2, 6,
  1, 2, 4,
  1, 5;
  --------
Row sums give A221529.
The slices of the tetrahedron appear in the upper zone of the following table (formed by four zones) which shows the correspondence between divisors and parts (n = 1..5):
.
|---|---------|-----|-------|---------|-----------|-------------|
| n |         |  1  |   2   |    3    |     4     |      5      |
|---|---------|-----|-------|---------|-----------|-------------|
|   |    -    |     |       |         |           |  5          |
| C |    -    |     |       |         |  3        |  3 6        |
| O |    -    |     |       |  2      |  2 4      |  2   6      |
| N | A027750 |     |  1    |  1 2    |  1   3    |  1 2   4    |
| D | A027750 |  1  |  1 2  |  1   3  |  1 2   4  |  1       5  |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
|   | A027750 |     |       |         |           |  1          |
|   | A027750 |     |       |         |           |  1          |
|   | A027750 |     |       |         |           |  1          |
|   | A027750 |     |       |         |           |  1          |
| D | A027750 |     |       |         |           |  1          |
| I |---------|-----|-------|---------|-----------|-------------|
| V | A027750 |     |       |         |  1        |  1 2        |
| I | A027750 |     |       |         |  1        |  1 2        |
| S | A027750 |     |       |         |  1        |  1 2        |
| O |---------|-----|-------|---------|-----------|-------------|
| R | A027750 |     |       |  1      |  1 2      |  1   3      |
| S | A027750 |     |       |  1      |  1 2      |  1   3      |
|   |---------|-----|-------|---------|-----------|-------------|
|   | A027750 |     |  1    |  1 2    |  1   3    |  1 2   4    |
|   |---------|-----|-------|---------|-----------|-------------|
|   | A027750 |  1  |  1 2  |  1   3  |  1 2   4  |  1       5  |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
|   | A138785 |  1  |  2 2  |  4 2 3  |  7 6 3 4  | 12 8 6 4 5  |
|   |         |  =  |  = =  |  = = =  |  = = = =  |  = = = = =  |
| L | A002260 |  1  |  1 2  |  1 2 3  |  1 2 3 4  |  1 2 3 4 5  |
| I |         |  *  |  * *  |  * * *  |  * * * *  |  * * * * *  |
| N | A066633 |  1  |  2 1  |  4 1 1  |  7 3 1 1  | 12 4 2 1 1  |
| K |         |  |  |  |\|  |  |\|\|  |  |\|\|\|  |  |\|\|\|\|  |
|   | A181187 |  1  |  3 1  |  6 2 1  | 12 5 2 1  | 20 8 4 2 1  |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
| P |         |  1  |  1 1  |  1 1 1  |  1 1 1 1  |  1 1 1 1 1  |
| A |         |     |  2    |  2 1    |  2 1 1    |  2 1 1 1    |
| R |         |     |       |  3      |  3 1      |  3 1 1      |
| T |         |     |       |         |  2 2      |  2 2 1      |
| I |         |     |       |         |  4        |  4 1        |
| T |         |     |       |         |           |  3 2        |
| I |         |     |       |         |           |  5          |
| O |         |     |       |         |           |             |
| N |         |     |       |         |           |             |
| S |         |     |       |         |           |             |
|---|---------|-----|-------|---------|-----------|-------------|
.
The upper zone is a condensed version of the "divisors" zone.
The above table is the table of A340056 upside down.
		

Crossrefs

Programs

  • Mathematica
    A340057row[n_]:=Flatten[Table[Divisors[m]PartitionsP[n-m],{m,n}]];Array[A340057row,10] (* Paolo Xausa, Sep 02 2023 *)

A206433 Total number of odd parts in the last section of the set of partitions of n.

Original entry on oeis.org

1, 1, 3, 3, 7, 9, 15, 19, 32, 40, 60, 78, 111, 143, 200, 252, 343, 437, 576, 728, 952, 1190, 1531, 1911, 2426, 3008, 3788, 4664, 5819, 7143, 8830, 10780, 13255, 16095, 19661, 23787, 28881, 34795, 42051, 50445, 60675, 72547, 86859, 103481, 123442, 146548
Offset: 1

Views

Author

Omar E. Pol, Feb 12 2012

Keywords

Comments

From Omar E. Pol, Apr 07 2023: (Start)
Convolution of A002865 and A001227.
a(n) is also the total number of odd divisors of the terms in the n-th row of the triangle A336811.
a(n) is also the number of odd terms in the n-th row of the triangle A207378.
a(n) is also the number of odd terms in the n-th row of the triangle A336812. (End)

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; local f, g;
          if n=0 or i=1 then [1, n]
        else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i));
             [f[1]+g[1], f[2]+g[2]+ (i mod 2)*g[1]]
          fi
        end:
    a:= n-> b(n, n)[2] -b(n-1, n-1)[2]:
    seq(a(n), n=1..50);  # Alois P. Heinz, Mar 22 2012
  • Mathematica
    b[n_, i_] := b[n, i] = Module[{f, g}, If[n==0 || i==1, {1, n}, f = b[n, i-1]; g = If[i>n, {0, 0}, b[n-i, i]]; {f[[1]]+g[[1]], f[[2]]+g[[2]] + Mod[i, 2]*g[[1]]}]]; a[n_] := b[n, n][[2]]-b[n-1, n-1][[2]]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Feb 16 2017, after Alois P. Heinz *)

Extensions

More terms from Alois P. Heinz, Mar 22 2012

A206434 Total number of even parts in the last section of the set of partitions of n.

Original entry on oeis.org

0, 1, 0, 3, 1, 6, 4, 13, 10, 24, 23, 46, 46, 81, 88, 143, 159, 242, 278, 404, 470, 657, 776, 1057, 1251, 1663, 1984, 2587, 3089, 3967, 4742, 6012, 7184, 9001, 10753, 13351, 15917, 19594, 23335, 28514, 33883, 41140, 48787, 58894, 69691, 83680, 98809, 118101
Offset: 1

Views

Author

Omar E. Pol, Feb 12 2012

Keywords

Comments

From Omar E. Pol, Apr 07 2023: (Start)
Convolution of A002865 and A183063.
a(n) is also the total number of even divisors of the terms in the n-th row of the triangle A336811.
a(n) is also the number of even terms in the n-th row of the triangle A207378.
a(n) is also the number of even terms in the n-th row of the triangle A336812. (End)

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; local f, g;
          if n=0 or i=1 then [1, 0]
        else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i));
             [f[1]+g[1], f[2]+g[2]+ ((i+1) mod 2)*g[1]]
          fi
        end:
    a:= n-> b(n, n)[2] -b(n-1, n-1)[2]:
    seq (a(n), n=1..50);  # Alois P. Heinz, Mar 22 2012
  • Mathematica
    b[n_, i_] := b[n, i] = Module[{f, g}, If[n == 0 || i == 1, {1, 0}, f = b[n, i-1]; g = If[i>n, {0, 0}, b[n-i, i]]; {f[[1]] + g[[1]], f[[2]] + g[[2]] + Mod[i+1, 2]*g[[1]]}]]; a[n_] := b[n, n][[2]]-b[n-1, n-1][[2]]; Table[ a[n], {n, 1, 50}] (* Jean-François Alcover, Feb 16 2017, after Alois P. Heinz *)

Formula

G.f.: (Sum_{i>0} (x^(2*i)-x^(2*i+1))/(1-x^(2*i)))/Product_{i>0} (1-x^i). - Alois P. Heinz, Mar 23 2012

Extensions

More terms from Alois P. Heinz, Mar 22 2012

A209918 Tetrahedron in which the n-th slice is also one of the three views of the shell model of partitions of A207380 with n shells.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 5, 4, 2, 1, 1, 2, 2, 1, 1, 1, 7, 6, 4, 2, 1, 1, 2, 3, 2, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Mar 26 2012

Keywords

Comments

Each slice of the tetrahedron is a triangle, thus the number of elements in the n-th slice is A000217(n). The slices are perpendicular to the slices of A026792. Each element of the n-th slice equals the volume of a column of the shell model of partitions with n shells. The sum of each column of the n-th slice is A000041(n). The sum of all elements of the n-th slice is A066186(n).
It appears that the triangle formed by the first row of each slice gives A058399.
It appears that the triangle formed by the last column of each slice gives A008284 and A058398.
Also consider a vertical rectangle on the infinite square grid with shorter side = n and longer side = p(n) = A000041(n). Each row of rectangle represents a partition of n. Each part of each partition of n is a horizontal rectangle with shorter side = 1 and longer side = k, where k is the size of the part. It appears that T(n,k,j) is also the number of k-th parts of all partitions of n in the j-th column of rectangle.

Examples

			---------------------------------------------------------
Illustration of first five                       A181187
slices of the tetrahedron                        Row sum
---------------------------------------------------------
. 1,                                                1
.    2, 1,                                          3
.       1,                                          1
.          3, 2, 1                                  6
.             1, 1,                                 2
.                1,                                 1
.                   5, 4, 2, 1,                    12
.                      1, 2, 2,                     5
.                         1, 1                      2
.                            1,                     1
.                               7, 6, 4, 2, 1,     20
.                                  1, 2, 3, 2,      8
.                                     1, 1, 2,      4
.                                        1, 1,      2
.                                           1,      1
--------------------------------------------------------
. 1, 2, 2, 3, 3, 3, 5, 5, 5, 5, 7, 7, 7, 7, 7,
.
Note that the 5th slice appears as one of three views of the model in the example section of A207380.
		

Crossrefs

Row sums give A181187. Column sums give A209656. Main diagonal gives A210765. Another version is A209655.

A210956 Triangle read by rows: T(n,k) = sum of all parts <= k in the last section of the set of partitions of n.

Original entry on oeis.org

1, 1, 3, 2, 2, 5, 3, 7, 7, 11, 5, 7, 10, 10, 15, 7, 15, 21, 25, 25, 31, 11, 17, 23, 27, 32, 32, 39, 15, 31, 40, 52, 57, 63, 63, 71, 22, 36, 54, 62, 72, 78, 85, 85, 94, 30, 60, 78, 98, 113, 125, 132, 140, 140, 150, 42, 72, 102, 122, 142, 154, 168, 176, 185, 185, 196
Offset: 1

Views

Author

Omar E. Pol, May 01 2012

Keywords

Comments

Row n lists the partial sums of row n of triangle A207383.

Examples

			Triangle begins:
1;
1,   3;
2,   2, 5;
3,   7, 7, 11;
5,   7, 10, 10, 15;
7,  15, 21, 25, 25, 31;
11, 17, 23, 27, 32, 32, 39;
15, 31, 40, 52, 57, 63, 63, 71;
22, 36, 54, 62, 72, 78, 85, 85, 94;
		

Crossrefs

Column 1 is A000041. Right border gives A138879.

Programs

  • PARI
    Row(n)={my(v=vector(n)); v[1]=numbpart(n-1); if(n>1, forpart(p=n, for(k=1, #p, v[p[k]]++), [2,n])); for(k=2, n, v[k]=v[k-1]+k*v[k]); v}
    { for(n=1, 10, print(Row(n))) }

Formula

T(n,k) = Sum_{j=1..k} A207383(n,j).

Extensions

Terms a(46) and beyond from Andrew Howroyd, Feb 19 2020

A211993 A list of ordered partitions of the positive integers.

Original entry on oeis.org

1, 2, 1, 1, 1, 1, 1, 2, 1, 3, 4, 2, 2, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 4, 1, 3, 2, 5, 6, 3, 3, 4, 2, 2, 2, 2, 5, 1, 3, 2, 1, 4, 1, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 2, 1, 1, 1, 4, 1, 1, 1, 3, 2, 1, 1, 5, 1, 1, 2, 2, 2, 1, 4, 2, 1, 3, 3, 1, 6, 1, 3, 2, 2, 5, 2, 4, 3, 7
Offset: 1

Views

Author

Omar E. Pol, Aug 18 2012

Keywords

Comments

The order of the partitions of the odd integers is the same as A211992. The order of the partitions of the even integers is the same as A026792.

Examples

			A table of partitions.
--------------------------------------------
.              Expanded       Geometric
Partitions     arrangement    model
--------------------------------------------
1;             1;             |*|
--------------------------------------------
2;             . 2;           |* *|
1,1;           1,1;           |o|*|
--------------------------------------------
1,1,1;         1,1,1;         |o|o|*|
2,1;           . 2,1;         |o o|*|
3;             . . 3;         |* * *|
--------------------------------------------
4,;            . . . 4;       |* * * *|
2,2;           . 2,. 2;       |* *|* *|
3,1;           . . 3,1;       |o o o|*|
2,1,1,;        . 2,1,1;       |o o|o|*|
1,1,1,1;       1,1,1,1;       |o|o|o|*|
--------------------------------------------
1,1,1,1,1;     1,1,1,1,1;     |o|o|o|o|*|
2,1,1,1;       . 2,1,1,1;     |o o|o|o|*|
3,1,1;         . . 3,1,1;     |o o o|o|*|
2,2,1;         . 2,. 2,1;     |o o|o o|*|
4,1;           . . . 4,1;     |o o o o|*|
3,2;           . . 3,. 2;     |* * *|* *|
5;             . . . . 5;     |* * * * *|
--------------------------------------------
6;             . . . . . 6;   |* * * * * *|
3,3;           . . 3,. . 3;   |* * *|* * *|
4,2;           . . . 4,. 2;   |* * * *|* *|
2,2,2;         . 2,. 2,. 2;   |* *|* *|* *|
5,1;           . . . . 5,1;   |o o o o o|*|
3,2,1;         . . 3,. 2,1;   |o o o|o o|*|
4,1,1;         . . . 4,1,1;   |o o o o|o|*|
2,2,1,1;       . 2,. 2,1,1;   |o o|o o|o|*|
3,1,1,1;       . . 3,1,1,1;   |o o o|o|o|*|
2,1,1,1,1;     . 2,1,1,1,1;   |o o|o|o|o|*|
1,1,1,1,1,1;   1,1,1,1,1,1;   |o|o|o|o|o|*|
--------------------------------------------
Note that * is a unitary element of every part of the last section of j.
		

Crossrefs

Rows sums give A036042, n>=1.
Other versions are A026792, A211992, A211994. See also A211983, A211984, A211989, A211999. Spiral arrangements are A211985-A211988, A211995-A211998.

A212000 Triangle read by rows: T(n,k) = total number of parts in the last n-k+1 shells of n.

Original entry on oeis.org

1, 3, 2, 6, 5, 3, 12, 11, 9, 6, 20, 19, 17, 14, 8, 35, 34, 32, 29, 23, 15, 54, 53, 51, 48, 42, 34, 19, 86, 85, 83, 80, 74, 66, 51, 32, 128, 127, 125, 122, 116, 108, 93, 74, 42, 192, 191, 189, 186, 180, 172, 157, 138, 106, 64, 275, 274, 272, 269, 263, 255, 240
Offset: 1

Views

Author

Omar E. Pol, Apr 26 2012

Keywords

Comments

The set of partitions of n contains n shells (see A135010). Let m and n be two positive integers such that m <= n. It appears that in any set formed by m connected shells, or m disconnected shells, or a mixture of both, the sum of all parts of the j-th column equals the total number of parts >= j in the same set (see example). More generally it appears that any of these sets has the same properties mentioned in A206563 and A207031.
It appears that the last k shells of n contain p(n-k) parts of size k, where p(n) = A000041(n). See also A182703.

Examples

			For n = 5 the illustration shows five sets containing the last n-k+1 shells of 5 and below we can see that the sum of all parts of the first column equals the total number of parts in each set:
--------------------------------------------------------
.  S{1-5}     S{2-5}     S{3-5}     S{4-5}     S{5}
--------------------------------------------------------
.  The        Last       Last       Last       The
.  five       four       three      two        last
.  shells     shells     shells     shells     shell
.  of 5       of 5       of 5       of 5       of 5
--------------------------------------------------------
.
.  5          5          5          5          5
.  3+2        3+2        3+2        3+2        3+2
.  4+1        4+1        4+1        4+1          1
.  2+2+1      2+2+1      2+2+1      2+2+1          1
.  3+1+1      3+1+1      3+1+1        1+1          1
.  2+1+1+1    2+1+1+1      1+1+1        1+1          1
.  1+1+1+1+1    1+1+1+1      1+1+1        1+1          1
. ---------- ---------- ---------- ---------- ----------
. 20         19         17         14          8
.
So row 5 lists 20, 19, 17, 14, 8.
.
Triangle begins:
1;
3,     2;
6,     5,   3;
12,   11,   9,   6;
20,   19,  17,  14,  8;
35,   34,  32,  29,  23,  15;
54,   53,  51,  48,  42,  34,  19;
86,   85,  83,  80,  74,  66,  51,  32;
128, 127, 125, 122, 116, 108,  93,  74,  42;
192, 191, 189, 186, 180, 172, 157, 138, 106, 64;
		

Crossrefs

Mirror of triangle A212010. Column 1 is A006128. Right border gives A138137.

Formula

T(n,k) = A006128(n) - A006128(k-1).
T(n,k) = Sum_{j=k..n} A138137(j).

A212001 Triangle read by rows: T(n,k) = sum of all parts of the last n-k+1 shells of n.

Original entry on oeis.org

1, 4, 3, 9, 8, 5, 20, 19, 16, 11, 35, 34, 31, 26, 15, 66, 65, 62, 57, 46, 31, 105, 104, 101, 96, 85, 70, 39, 176, 175, 172, 167, 156, 141, 110, 71, 270, 269, 266, 261, 250, 235, 204, 165, 94, 420, 419, 416, 411, 400, 385, 354, 315, 244, 150, 616, 615
Offset: 1

Views

Author

Omar E. Pol, Apr 26 2012

Keywords

Comments

The set of partitions of n contains n shells (see A135010). It appears that the last k shells of n contain p(n-k) parts of size k, where p(n) = A000041(n). See also A182703.

Examples

			For n = 5 the illustration shows five sets containing the last n-k+1 shells of 5 and below the sum of all parts of each set:
--------------------------------------------------------
.  S{1-5}     S{2-5}     S{3-5}     S{4-5}     S{5}
--------------------------------------------------------
.  The        Last       Last       Last       The
.  five       four       three      two        last
.  shells     shells     shells     shells     shell
.  of 5       of 5       of 5       of 5       of 5
--------------------------------------------------------
.
.  5          5          5          5          5
.  3+2        3+2        3+2        3+2        3+2
.  4+1        4+1        4+1        4+1          1
.  2+2+1      2+2+1      2+2+1      2+2+1          1
.  3+1+1      3+1+1      3+1+1        1+1          1
.  2+1+1+1    2+1+1+1      1+1+1        1+1          1
.  1+1+1+1+1    1+1+1+1      1+1+1        1+1          1
. ---------- ---------- ---------- ---------- ----------
.     35         34         31         26         15
.
So row 5 lists 35, 34, 31, 26, 15.
.
Triangle begins:
1;
4,     3;
9,     8,   5;
20,   19,  16,  11;
35,   34,  31,  26,  15;
66,   65,  62,  57,  46,  31;
105, 104, 101,  96,  85,  70,  39;
176, 175, 172, 167, 156, 141, 110,  71;
270, 269, 266, 261, 250, 235, 204, 165,  94;
420, 419, 416, 411, 400, 385, 354, 315, 244, 150;
		

Crossrefs

Mirror of triangle A212011. Column 1 is A066186. Right border is A138879.

Formula

T(n,k) = A066186(n) - A066186(k-1).
T(n,k) = Sum_{j=k..n} A138879(j).
Previous Showing 51-60 of 99 results. Next