cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 55 results. Next

A353862 Greatest run-sum of the prime indices of n.

Original entry on oeis.org

0, 1, 2, 2, 3, 2, 4, 3, 4, 3, 5, 2, 6, 4, 3, 4, 7, 4, 8, 3, 4, 5, 9, 3, 6, 6, 6, 4, 10, 3, 11, 5, 5, 7, 4, 4, 12, 8, 6, 3, 13, 4, 14, 5, 4, 9, 15, 4, 8, 6, 7, 6, 16, 6, 5, 4, 8, 10, 17, 3, 18, 11, 4, 6, 6, 5, 19, 7, 9, 4, 20, 4, 21, 12, 6, 8, 5, 6, 22, 4, 8
Offset: 1

Views

Author

Gus Wiseman, May 23 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A run-sum of a sequence is the sum of any maximal consecutive constant subsequence.

Examples

			The prime indices of 72 are {1,1,1,2,2}, with run-sums {3,4}, so a(72) = 4.
		

Crossrefs

Positions of first appearances are A008578.
For binary expansion we have A038374, least A144790.
For run-lengths instead of run-sums we have A051903.
Distinct run-sums are counted by A353835, weak A353861.
The least run-sum is given by A353931.
A001222 counts prime factors, distinct A001221.
A005811 counts runs in binary expansion.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914.
A300273 ranks collapsible partitions, counted by A275870.
A304442 counts partitions with all equal run-sums, compositions A353851.
A353832 represents the operation of taking run-sums of a partition.
A353833 ranks partitions with all equal run sums, nonprime A353834.
A353838 ranks partitions with all distinct run-sums, counted by A353837.
A353840-A353846 pertain to partition run-sum trajectory.

Programs

  • Mathematica
    Table[Max@@Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k],{n,100}]

A325258 a(1) = 1; otherwise, first differences of Levine's sequence A011784.

Original entry on oeis.org

1, 1, 1, 1, 3, 7, 28, 171, 2624, 172613, 139584150, 6837485347187, 266437138079023501057, 508009471379222384299345337895696, 37745517525533091954228691786161750063795478326636142, 5347426383812697233786139576220412396732847744407175515852823296919414647252347610750
Offset: 0

Views

Author

Gus Wiseman, Apr 16 2019

Keywords

Comments

a(n) is the number of nonnegative integers k such that the maximum adjusted frequency depth among integer partitions of k is n. For example, the a(5) = 7 numbers are 7, 8, 9, 10, 11, 12, and 13.
The adjusted frequency depth of an integer partition is 0 if the partition is empty, and otherwise it is 1 plus the number of times one must take the multiset of multiplicities to reach a singleton. For example, the partition (32211) has adjusted frequency depth 5 because we have: (32211) -> (221) -> (21) -> (11) -> (2). The enumeration of integer partitions by adjusted frequency depth is given by A325280. The adjusted frequency depth of the integer partition with Heinz number n is A323014(n). The maximum adjusted frequency depth for partitions of n is A325282(n).

Crossrefs

Programs

  • Mathematica
    grw[q_]:=Join@@Table[ConstantArray[i,q[[Length[q]-i+1]]],{i,Length[q]}];
    ReplacePart[Differences[Last/@NestList[grw,{1,1},9]],2->1]

A182855 Numbers that require exactly five iterations to reach a fixed point under the x -> A181819(x) map.

Original entry on oeis.org

60, 84, 90, 120, 126, 132, 140, 150, 156, 168, 180, 198, 204, 220, 228, 234, 240, 252, 260, 264, 270, 276, 280, 294, 300, 306, 308, 312, 315, 336, 340, 342, 348, 350, 364, 372, 378, 380, 396, 408, 414, 420, 440, 444, 450, 456, 460, 468, 476, 480, 490, 492, 495
Offset: 1

Views

Author

Matthew Vandermast, Jan 04 2011

Keywords

Comments

In each case, 2 is the fixed point that is reached (1 is the other fixed point of the x -> A181819(x) map).
Includes all integers whose prime signature a) contains two or more distinct numbers, and b) contains no number that occurs the same number of times as any other number. The first member of this sequence that does not fit that description is 75675600, whose prime signature is (4,3,2,2,1,1).
A full characterization is: Numbers whose prime signature (1) has not all equal multiplicities but (2) the numbers of distinct parts appearing with each distinct multiplicity are all equal. For example, the prime signature of 2520 is {1,1,2,3}, which satisfies (1) but fails (2), as the numbers of distinct parts appearing with each distinct multiplicity are 1 (with multiplicity 2, the part being 1) and 2 (with multiplicity 1, the parts being 2 and 3). Hence the sequence does not contain 2520. - Gus Wiseman, Jan 02 2019

Examples

			1. 180 requires exactly five iterations under the x -> A181819(x) map to reach a fixed point (namely, 2).  A181819(180) = 18;  A181819(18) = 6; A181819(6) = 4; A181819(4) = 3;  A181819(3) = 2 (and A181819(2) = 2).
2. The prime signature of 180 (2^2*3^2*5) is (2,2,1).
a. Two distinct numbers appear in (2,2,1) (namely, 1 and 2).
b. Neither 1 nor 2 appears in (2,2,1) the same number of times as any other number that appears there.
		

Crossrefs

Numbers n such that A182850(n) = 5. See also A182853, A182854.
Subsequence of A059404 and A182851. Includes A085987 and A179642 as subsequences.

Programs

  • Mathematica
    Select[Range[1000],With[{sig=Sort[Last/@FactorInteger[#]]},And[!SameQ@@Length/@Split[sig],SameQ@@Length/@Union/@GatherBy[sig,Length[Position[sig,#]]&]]]&] (* Gus Wiseman, Jan 02 2019 *)

A325254 Number of integer partitions of n with the maximum adjusted frequency depth for partitions of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 3, 3, 1, 3, 7, 10, 17, 27, 38, 1, 4, 8, 17, 31, 52, 83, 122, 181, 257, 361, 499, 684, 910, 1211, 1595, 2060, 2663, 3406, 4315, 5426, 6784, 8417, 10466, 12824, 15721, 19104, 23267, 1, 5, 14, 36, 76, 143, 269, 446, 738, 1143, 1754, 2570, 3742, 5269
Offset: 0

Views

Author

Gus Wiseman, Apr 16 2019

Keywords

Comments

The Heinz numbers of these partitions are given by A325283.
The adjusted frequency depth of an integer partition is 0 if the partition is empty, and otherwise it is 1 plus the number of times one must take the multiset of multiplicities to reach a singleton. For example, the partition (32211) has adjusted frequency depth 5 because we have: (32211) -> (221) -> (21) -> (11) -> (2). The enumeration of integer partitions by adjusted frequency depth is given by A325280. The adjusted frequency depth of the integer partition with Heinz number n is given by A323014. The maximum adjusted frequency depth for integer partitions of n is given by A325282.
Essentially, the last numbers of rows of the array in A225485. - Clark Kimberling, Sep 13 2022

Examples

			The a(1) = 1 through a(11) = 17 partitions:
  1  11  21  211  221   411    3211  3221   3321    5221     4322
                  311   3111         4211   4221    5311     4331
                  2111  21111        32111  4311    6211     4421
                                            5211    32221    5411
                                            32211   33211    6221
                                            42111   42211    6311
                                            321111  43111    7211
                                                    52111    33221
                                                    421111   42221
                                                    3211111  43211
                                                             52211
                                                             53111
                                                             62111
                                                             431111
                                                             521111
                                                             4211111
                                                             32111111
		

Crossrefs

Integer partition triangles: A008284 (first omega), A116608 (second omega), A325242 (third omega), A325268 (second-to-last omega), A225485 or A325280 (length/frequency depth).

Programs

  • Mathematica
    nn=30;
    fdadj[ptn_List]:=If[ptn=={},0,Length[NestWhileList[Sort[Length/@Split[#]]&,ptn,Length[#]>1&]]];
    mfds=Table[Max@@fdadj/@IntegerPartitions[n],{n,nn}];
    Table[Length[Select[IntegerPartitions[n],fdadj[#]==mfds[[n]]&]],{n,0,nn}]

A304455 Number of steps in the reduction to a multiset of size 1 of the multiset of prime factors of n, obtained by repeatedly taking the multiset of multiplicities.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 1, 1, 2, 0, 3, 0, 2, 2, 1, 0, 3, 0, 3, 2, 2, 0, 3, 1, 2, 1, 3, 0, 2, 0, 1, 2, 2, 2, 2, 0, 2, 2, 3, 0, 2, 0, 3, 3, 2, 0, 3, 1, 3, 2, 3, 0, 3, 2, 3, 2, 2, 0, 4, 0, 2, 3, 1, 2, 2, 0, 3, 2, 2, 0, 3, 0, 2, 3, 3, 2, 2, 0, 3, 1, 2, 0, 4, 2, 2, 2, 3, 0, 4, 2, 3, 2, 2, 2, 3, 0, 3, 3, 2, 0, 2, 0, 3, 2
Offset: 1

Views

Author

Gus Wiseman, May 12 2018

Keywords

Examples

			The a(2520) = 5 steps are {2,2,2,3,3,5,7} -> {1,1,2,3} -> {1,1,2} -> {1,2} -> {1,1} -> {2}.
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[FixedPointList[Sort[Length/@Split[#]]&,If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[p,{k}]]]]],Length[#]>1&]],{n,100}]
  • PARI
    A181819(n) = factorback(apply(e->prime(e),(factor(n)[,2])));
    A304455(n) = if(n<=2,0, n=A181819(n); if(2==n,0,1+A304455(n))); \\ Antti Karttunen, Dec 06 2018

Formula

For n > 2, a(n) = A182850(n) - 1.
a(prime(n)) = 0.
a(A246547(n)) = 1.

Extensions

More terms from Antti Karttunen, Dec 06 2018

A304687 Start with the multiset of prime multiplicities of n. Given a multiset, take the multiset of its multiplicities. Repeat until a constant multiset {k,k,...,k} is reached, and set a(n) to the sum of this multiset (k times the length).

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 2, 1, 2, 2, 4, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 3, 2, 1, 3, 1, 5, 2, 2, 2, 4, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 6, 2, 3, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 2, 3, 1, 2, 4, 2, 1, 2, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, May 16 2018

Keywords

Examples

			The following are examples showing the reduction of a multiset starting with the multiset of prime multiplicities of n.
         a(60) = 2: {1,1,2} -> {1,2} -> {1,1}.
        a(360) = 3: {1,2,3} -> {1,1,1}.
       a(1260) = 4: {1,1,2,2} -> {2,2}.
a(21492921450) = 6: {1,1,2,2,3,3} -> {2,2,2}.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) map(i-> i[2], ifactors(n)[2]);
          while nops({%[]})>1 do [coeffs(add(x^i, i=%))] od;
          add(i, i=%)
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, May 17 2018
  • Mathematica
    Table[If[n==1,0,NestWhile[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]],!SameQ@@#&]//Total],{n,360}]

A325756 A number k belongs to the sequence if k = 1 or k is divisible by its prime shadow A181819(k) and the quotient k/A181819(k) also belongs to the sequence.

Original entry on oeis.org

1, 2, 12, 336, 360, 45696, 52416, 75600, 22665216, 31804416, 42928704, 77792400, 92610000, 164656800, 174636000
Offset: 1

Views

Author

Gus Wiseman, May 19 2019

Keywords

Comments

We define the prime shadow A181819(k) to be the product of primes indexed by the exponents in the prime factorization of n. For example, 90 = prime(1)*prime(2)^2*prime(3) has prime shadow prime(1)*prime(2)*prime(1) = 12.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}
      2: {1}
     12: {1,1,2}
    336: {1,1,1,1,2,4}
    360: {1,1,1,2,2,3}
  45696: {1,1,1,1,1,1,1,2,4,7}
  52416: {1,1,1,1,1,1,2,2,4,6}
  75600: {1,1,1,1,2,2,2,3,3,4}
		

Crossrefs

Programs

  • Mathematica
    red[n_] := If[n == 1, 1, Times @@ Prime /@ Last /@ FactorInteger[n]];
    suQ[n_]:=n==1||Divisible[n,red[n]]&&suQ[n/red[n]];
    Select[Range[10000],suQ]
  • PARI
    ps(n) = my(f=factor(n)); prod(k=1, #f~, prime(f[k, 2])); \\ A181819
    isok(k) = {if ((k==1), return(1)); my(p=ps(k)); ((k % p) == 0) && isok(k/p);} \\ Michel Marcus, Jan 09 2021

Extensions

a(9)-a(15) from Amiram Eldar, Jan 09 2021

A353743 Least number with run-sum trajectory of length k; a(0) = 1.

Original entry on oeis.org

1, 2, 4, 12, 84, 1596, 84588, 11081028, 3446199708, 2477817590052, 4011586678294188, 14726534696017964148, 120183249654202605411828, 2146833388573021140471483564, 83453854313999050793547980583372, 7011542477899258250521520684673165324
Offset: 0

Views

Author

Gus Wiseman, Jun 11 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4). The run-sum trajectory is obtained by repeatedly taking the run-sum transformation (A353832, A353847) until a squarefree number is reached. For example, the trajectory 12 -> 9 -> 7 corresponds to the partitions (2,1,1) -> (2,2) -> (4).

Examples

			The terms together with their prime indices begin:
      1: {}
      2: {1}
      4: {1,1}
     12: {1,1,2}
     84: {1,1,2,4}
   1596: {1,1,2,4,8}
  84588: {1,1,2,4,8,16}
		

Crossrefs

The ordered version is A072639, for run-lengths A333629.
The version for run-lengths is A325278, firsts in A182850 or A323014.
The run-sum trajectory is the iteration of A353832.
The first length-k row of A353840 has index a(k).
Other sequences pertaining to this trajectory are A353841-A353846.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798 and A296150.
A300273 ranks collapsible partitions, counted by A275870.
A353833 ranks partitions with all equal run-sums, counted by A304442.
A353835 counts distinct run-sums of prime indices, weak A353861.
A353838 ranks partitions with all distinct run-sums, counted by A353837.
A353866 ranks rucksack partitions, counted by A353864.

Programs

  • Mathematica
    Join[{1,2},Table[2*Product[Prime[2^k],{k,0,n}],{n,0,6}]]

Formula

a(n > 1) = 2 * Product_{k=0..n-2} prime(2^k).
a(n > 0) = 2 * A325782(n).

A304634 Numbers n with prime omicron 2, meaning A304465(n) = 2.

Original entry on oeis.org

4, 6, 9, 10, 12, 14, 15, 18, 20, 21, 22, 24, 25, 26, 28, 33, 34, 35, 36, 38, 39, 40, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 65, 68, 69, 72, 74, 75, 76, 77, 80, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 104
Offset: 1

Views

Author

Gus Wiseman, May 15 2018

Keywords

Comments

If n > 1 is not a prime number, we have A056239(n) >= Omega(n) >= omega(n) >= A071625(n) >= ... >= omicron(n) > 1 where Omega = A001222, omega = A001221, and omicron = A304465.

Examples

			This is a list of normalized factorizations (see A112798) of selected entries:
    4: {1,1}
    6: {1,2}
   12: {1,1,2}
   24: {1,1,1,2}
   36: {1,1,2,2}
   48: {1,1,1,1,2}
   60: {1,1,2,3}
   72: {1,1,1,2,2}
   96: {1,1,1,1,1,2}
  120: {1,1,1,2,3}
  144: {1,1,1,1,2,2}
  180: {1,1,2,2,3}
  192: {1,1,1,1,1,1,2}
  216: {1,1,1,2,2,2}
  240: {1,1,1,1,2,3}
  288: {1,1,1,1,1,2,2}
  384: {1,1,1,1,1,1,1,2}
  420: {1,1,2,3,4}
  432: {1,1,1,1,2,2,2}
  480: {1,1,1,1,1,2,3}
  576: {1,1,1,1,1,1,2,2}
  768: {1,1,1,1,1,1,1,1,2}
  840: {1,1,1,2,3,4}
  864: {1,1,1,1,1,2,2,2}
  960: {1,1,1,1,1,1,2,3}
		

Crossrefs

Programs

  • Mathematica
    Join@@Position[Table[Switch[n,1,0,?PrimeQ,1,,NestWhile[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]],Length[#]>1&]//First],{n,100}],2]

A304636 Numbers n with prime omicron 3, meaning A304465(n) = 3.

Original entry on oeis.org

8, 27, 30, 42, 66, 70, 78, 102, 105, 110, 114, 125, 130, 138, 154, 165, 170, 174, 182, 186, 190, 195, 222, 230, 231, 238, 246, 255, 258, 266, 273, 282, 285, 286, 290, 310, 318, 322, 343, 345, 354, 357, 360, 366, 370, 374, 385, 399, 402, 406, 410, 418, 426
Offset: 1

Views

Author

Gus Wiseman, May 15 2018

Keywords

Comments

If n > 1 is not a prime number, we have A056239(n) >= Omega(n) >= omega(n) >= A071625(n) >= ... >= omicron(n) > 1 where Omega = A001222, omega = A001221, and omicron = A304465.

Examples

			This is a list of normalized factorizations (see A112798) of selected entries:
     8: {1,1,1}
    30: {1,2,3}
   360: {1,1,1,2,2,3}
   720: {1,1,1,1,2,2,3}
   900: {1,1,2,2,3,3}
  1440: {1,1,1,1,1,2,2,3}
  2160: {1,1,1,1,2,2,2,3}
  2880: {1,1,1,1,1,1,2,2,3}
  4320: {1,1,1,1,1,2,2,2,3}
  5760: {1,1,1,1,1,1,1,2,2,3}
  8640: {1,1,1,1,1,1,2,2,2,3}
Starting with A112798(1801800) and repeatedly taking the multiset of multiplicities we have {1,1,1,2,2,3,3,4,5,6} -> {1,1,1,2,2,3} -> {1,2,3} -> {1,1,1} -> {3}, so 1801800 belongs to the sequence.
		

Crossrefs

Programs

  • Mathematica
    Join@@Position[Table[Switch[n,1,0,?PrimeQ,1,,NestWhile[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]],Length[#]>1&]//First],{n,200}],3]
Previous Showing 31-40 of 55 results. Next