A272210
Difference table of the divisors of the positive integers (with every table read by antidiagonals upwards).
Original entry on oeis.org
1, 1, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 4, 1, 4, 5, 1, 1, 2, 0, 1, 3, 2, 2, 3, 6, 1, 6, 7, 1, 1, 2, 1, 2, 4, 1, 2, 4, 8, 1, 2, 3, 4, 6, 9, 1, 1, 2, 2, 3, 5, 0, 2, 5, 10, 1, 10, 11, 1, 1, 2, 0, 1, 3, 0, 0, 1, 4, 1, 1, 1, 2, 6, 1, 2, 3, 4, 6, 12, 1, 12, 13, 1, 1, 2, 4, 5, 7, -2, 2, 7, 14, 1, 2, 3, 0, 2, 5, 8, 8, 10, 15
Offset: 1
The tables of the first nine positive integers are
1; 1, 2; 1, 3; 1, 2, 4; 1, 5; 1, 2, 3, 6; 1, 7; 1, 2, 4, 8; 1, 3, 9;
. 1; 2; 1, 2; 4; 1, 1, 3; 6; 1, 2, 4; 2, 6;
. 1; 0, 2; 1, 2; 4;
. 2; 1;
.
For n = 18 the difference table of the divisors of 18 is
1, 2, 3, 6, 9, 18;
1, 1, 3, 3, 9;
0, 2, 0, 6;
2, -2, 6;
-4, 8;
12;
This table read by antidiagonals upwards gives the finite subsequence [1], [1, 2], [0, 1, 3], [2, 2, 3, 6], [-4, -2, 0, 3, 9], [12, 8, 6, 6, 9, 18].
Cf.
A000005,
A000217,
A027750,
A161700,
A184389,
A187202,
A273102,
A273103,
A273109,
A273135,
A273132,
A273136,
A273261,
A273262,
A273263.
-
Table[Table[#[[m - k + 1, k]], {m, Length@ #}, {k, m}] &@ NestWhileList[Differences, Divisors@ n, Length@ # > 1 &], {n, 15}] // Flatten (* Michael De Vlieger, Jun 29 2016 *)
A273104
Absolute difference table of the divisors of the positive integers.
Original entry on oeis.org
1, 1, 2, 1, 1, 3, 2, 1, 2, 4, 1, 2, 1, 1, 5, 4, 1, 2, 3, 6, 1, 1, 3, 0, 2, 2, 1, 7, 6, 1, 2, 4, 8, 1, 2, 4, 1, 2, 1, 1, 3, 9, 2, 6, 4, 1, 2, 5, 10, 1, 3, 5, 2, 2, 0, 1, 11, 10, 1, 2, 3, 4, 6, 12, 1, 1, 1, 2, 6, 0, 0, 1, 4, 0, 1, 3, 1, 2, 1, 1, 13, 12, 1, 2, 7, 14, 1, 5, 7, 4, 2, 2, 1, 3, 5, 15, 2, 2, 10, 0, 8, 8
Offset: 1
For n = 18 the divisors of 18 are 1, 2, 3, 6, 9, 18, so the absolute difference triangle of the divisors of 18 is
1 . 2 . 3 . 6 . 9 . 18
. 1 . 1 . 3 . 3 . 9
. . 0 . 2 . 0 . 6
. . . 2 . 2 . 6
. . . . 0 . 4
. . . . . 4
and the 18th slice is
1, 2, 3, 6, 9, 18;
1, 1, 3, 3, 9;
0, 2, 0, 6;
2, 2, 6;
0, 4;
4;
The tetrahedron begins:
1;
1, 2;
1;
1, 3;
2;
1, 2, 4;
1, 2;
1;
...
This is also an irregular triangle T(n,r) read by rows in which row n lists the absolute difference triangle of the divisors of n flattened.
Row lengths are the terms of A184389. Row sums give A187215.
Triangle begins:
1;
1, 2, 1;
1, 3, 2;
1, 2, 4, 1, 2, 1;
...
-
Table[Drop[FixedPointList[Abs@ Differences@ # &, Divisors@ n], -2], {n, 15}] // Flatten (* Michael De Vlieger, May 16 2016 *)
A273130
Numbers which have only positive entries in the difference table of their divisors.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 21, 23, 25, 27, 29, 31, 32, 33, 37, 39, 41, 43, 47, 49, 51, 53, 55, 57, 59, 61, 64, 65, 67, 69, 71, 73, 79, 81, 83, 85, 87, 89, 93, 95, 97, 101, 103, 107, 109, 111, 113, 115, 119, 121, 123, 125, 127, 128, 129, 131, 133
Offset: 1
85 is in the sequence because the difference table of the divisors of 85 has only entries greater than 0:
[1, 5, 17, 85]
[4, 12, 68]
[8, 56]
[48]
-
Select[Range@ 1000, {} == NestWhile[ Differences, Divisors @ #, # != {} && Min[#] > 0 &] &] (* Giovanni Resta, May 16 2016 *)
-
has(v)=if(#v<2, v[1]>0, if(vecmin(v)<1, 0, has(vector(#v-1,i,v[i+1]-v[i]))))
is(n)=has(divisors(n)) \\ Charles R Greathouse IV, May 16 2016
-
def sf(z):
D = divisors(z)
T = matrix(ZZ, len(D))
for m, d in enumerate(D):
T[0, m] = d
for k in range(m-1, -1, -1) :
T[m-k, k] = T[m-k-1, k+1] - T[m-k-1, k]
if T[m-k, k] <= 0: return False
return True
print([z for z in range(1,100) if sf(z)])
A273262
Irregular triangle read by rows: T(n,k) = sum of the elements of the k-th antidiagonal of the difference table of the divisors of n.
Original entry on oeis.org
1, 1, 3, 1, 5, 1, 3, 7, 1, 9, 1, 3, 4, 13, 1, 13, 1, 3, 7, 15, 1, 5, 19, 1, 3, 10, 17, 1, 21, 1, 3, 4, 5, 11, 28, 1, 25, 1, 3, 16, 21, 1, 5, 7, 41, 1, 3, 7, 15, 31, 1, 33, 1, 3, 4, 13, 6, 59, 1, 37, 1, 3, 7, 3, 31, 21, 1, 5, 13, 53, 1, 3, 28, 29, 1, 45, 1, 3, 4, 5, 11, 4, 36, 39, 1, 9, 61, 1, 3, 34, 33, 1, 5, 19, 65
Offset: 1
Triangle begins:
1;
1, 3;
1, 5;
1, 3, 7;
1, 9;
1, 3, 4, 13;
1, 13;
1, 3, 7, 15;
1, 5, 19;
1, 3, 10, 17;
1, 21;
1, 3, 4, 5, 11, 28;
1, 25;
1, 3, 16, 21;
1, 5, 7, 41;
1, 3, 7, 15, 31;
1, 33;
1, 3, 4, 13, 6, 59;
1, 37;
1, 3, 7, 3, 31, 21;
1, 5, 13, 53;
1, 3, 28, 29;
1, 45;
1, 3, 4, 5, 11, 4, 36, 39;
1, 9, 61;
1, 3, 34, 33;
1, 5, 19, 65;
...
For n = 18 the divisors of 18 are 1, 2, 3, 6, 9, 18, and the difference triangle of the divisors is
1, 2, 3, 6, 9, 18;
1, 1, 3, 3, 9;
0, 2, 0, 6;
2, -2, 6;
-4, 8;
12;
The antidiagonal sums give [1, 3, 4, 13, 6, 59] which is also the 18th row of the irregular triangle.
-
Table[Map[Total, Table[#[[m - k + 1, k]], {m, Length@ #}, {k, m}], {1}] &@ NestWhileList[Differences, Divisors@ n, Length@ # > 1 &], {n, 27}] (* Michael De Vlieger, Jun 26 2016 *)
-
row(n) = {my(d = divisors(n)); my(nd = #d); my(m = matrix(#d, #d)); for (j=1, nd, m[1,j] = d[j];); for (i=2, nd, for (j=1, nd - i +1, m[i,j] = m[i-1,j+1] - m[i-1,j];);); vector(nd, i, sum(k=0, i-1, m[i-k, k+1]));}
tabf(nn) = for (n=1, nn, print(row(n)););
lista(nn) = for (n=1, nn, v = row(n); for (j=1, #v, print1(v[j], ", "));); \\ Michel Marcus, Jun 25 2016
A273263
Irregular triangle read by rows: T(n,k) is the sum of the elements of the k-th column of the difference table of the divisors of n.
Original entry on oeis.org
1, 2, 2, 3, 3, 3, 4, 4, 5, 5, 4, 5, 6, 6, 7, 7, 4, 6, 8, 8, 7, 9, 9, 4, 7, 10, 10, 11, 11, 4, 6, 8, 10, 12, 12, 13, 13, 4, 9, 14, 14, 11, 13, 15, 15, 5, 8, 12, 16, 16, 17, 17, 12, 11, 12, 15, 18, 18, 19, 19, -3, 4, 10, 15, 20, 20, 13, 17, 21, 21, 4, 13, 22, 22, 23, 23, -4, 3, 8, 12, 16, 20, 24, 24, 21, 25, 25
Offset: 1
Triangle begins:
1;
2, 2;
3, 3;
3, 4, 4;
5, 5;
4, 5, 6, 6;
7, 7;
4, 6, 8, 8;
7, 9, 9;
4, 7, 10, 10;
11, 11;
4, 6, 8, 10, 12, 12;
13, 13;
4, 9, 14, 14;
11, 13, 15, 15;
5, 8, 12, 16, 16;
17, 17;
12, 11, 12, 15, 18, 18;
19, 19;
-3, 4, 10, 15, 20, 20;
13, 17, 21, 21;
4, 13, 22, 22;
23, 23;
-4, 3, 8, 12, 16, 20, 24, 24;
21, 25, 25;
4, 15, 26, 26;
...
For n = 18 the divisors of 18 are 1, 2, 3, 6, 9, 18, and the difference triangle of the divisors is
1, 2, 3, 6, 9, 18;
1, 1, 3, 3, 9;
0, 2, 0, 6;
2, -2, 6;
-4, 8;
12;
The column sums give [12, 11, 12, 15, 18, 18] which is also the 18th row of the irregular triangle.
-
Table[Total /@ Transpose@ Map[Function[w, PadRight[w, Length@ #]], NestWhileList[Differences, #, Length@ # > 1 &]] &@ Divisors@ n, {n, 25}] // Flatten (* Michael De Vlieger, Jun 26 2016 *)
-
row(n) = {my(d = divisors(n)); my(nd = #d); my(m = matrix(#d, #d)); for (j=1, nd, m[1,j] = d[j];); for (i=2, nd, for (j=1, nd - i +1, m[i,j] = m[i-1,j+1] - m[i-1,j];);); vector(nd, j, sum(i=1, nd, m[i, j]));}
tabf(nn) = for (n=1, nn, print(row(n)););
lista(nn) = for (n=1, nn, v = row(n); for (j=1, #v, print1(v[j], ", "));); \\ Michel Marcus, Jun 25 2016
A187208
Numbers such that the last of the absolute differences of divisors is 1.
Original entry on oeis.org
1, 2, 4, 8, 12, 16, 20, 32, 36, 48, 64, 80, 108, 112, 128, 156, 192, 204, 220, 252, 256, 260, 272, 304, 320, 324, 368, 396, 448, 476, 484, 512, 544, 608, 656, 660, 688, 768, 972, 1008, 1024, 1044, 1120, 1184, 1248, 1280, 1300, 1332, 1476, 1764, 1792, 1908
Offset: 1
-
import Data.List (elemIndices)
a187208 n = a187208_list !! (n-1)
a187208_list = map (+ 1) $ elemIndices 1 $ map a187203 [1..]
-- Reinhard Zumkeller, Aug 02 2011
-
lad1Q[n_]:=Nest[Abs[Differences[#]]&,Divisors[n],DivisorSigma[0,n]-1]=={1}; Select[Range[2000],lad1Q] (* Harvey P. Dale, Nov 07 2022 *)
A193672
Numbers such that the last of the differences of divisors is < 0.
Original entry on oeis.org
14, 20, 22, 24, 26, 28, 34, 36, 38, 40, 46, 48, 50, 58, 60, 62, 63, 70, 74, 80, 82, 84, 86, 94, 96, 98, 99, 100, 105, 106, 117, 118, 120, 122, 134, 136, 138, 140, 142, 146, 152, 153, 154, 158, 160, 166, 170, 174, 178, 180, 182, 184, 186, 189, 190, 192, 194
Offset: 1
-
import Data.List (findIndices)
a193672 n = a193672_list !! (n-1)
a193672_list = map (+ 1) $ findIndices (< 0) $ map a187202 [1..]
-
Select[Range[200],Differences[Divisors[#],DivisorSigma[0,#]-1][[1]]<0&] (* Harvey P. Dale, Feb 14 2025 *)
A273261
Irregular triangle read by rows: T(n,k) = sum of the elements of the k-th row of the difference table of the divisors of n.
Original entry on oeis.org
1, 3, 1, 4, 2, 7, 3, 1, 6, 4, 12, 5, 2, 2, 8, 6, 15, 7, 3, 1, 13, 8, 4, 18, 9, 4, 0, 12, 10, 28, 11, 5, 4, 3, 1, 14, 12, 24, 13, 6, -2, 24, 14, 8, 8, 31, 15, 7, 3, 1, 18, 16, 39, 17, 8, 6, 4, 12, 20, 18, 42, 19, 9, 4, 3, -11, 32, 20, 12, 8, 36, 21, 10, -6, 24, 22, 60, 23, 11, 8, 6, 3, 4, -12, 31, 24, 16, 42, 25, 12, -8
Offset: 1
Triangle begins:
1;
3, 1;
4, 2;
7, 3, 1;
6, 4;
12, 5, 2, 2;
8, 6;
15, 7, 3, 1;
13, 8, 4;
18, 9, 4, 0;
12, 10;
28, 11, 5, 4, 3, 1;
14, 12;
24, 13, 6, -2;
24, 14, 8, 8;
31, 15, 7, 3, 1;
18, 16;
39, 17, 8, 6, 4, 12;
20, 18;
42, 19, 9, 4, 3, -11;
32, 20, 12, 8;
36, 21, 10, -6;
24, 22;
60, 23, 11, 8, 6, 3, 4, -12;
31, 24, 16;
42, 25, 12, -8;
...
For n = 14 the divisors of 14 are 1, 2, 7, 14, and the difference triangle of the divisors is
1, 2, 7, 14;
1, 5, 7;
4, 2;
-2;
The row sums give [24, 13, 6, -2] which is also the 14th row of the irregular triangle.
In the first row, the last element is 14, the first is 1. So the sum of the second row is 14 - 1 is 13. Similarly, the sum of the third row is 7 - 1 = 6, and of the last row, 2 - 4 = -2. - _David A. Corneth_, Jun 25 2016
-
Map[Total, Table[NestWhileList[Differences, Divisors@ n, Length@ # > 1 &], {n, 26}], {2}] // Flatten (* Michael De Vlieger, Jun 26 2016 *)
-
row(n) = {my(d = divisors(n));my(nd = #d); my(m = matrix(#d, #d)); for (j=1, nd, m[1,j] = d[j];); for (i=2, nd, for (j=1, nd - i +1, m[i,j] = m[i-1,j+1] - m[i-1,j];);); vector(nd, i, sum(j=1, nd, m[i, j]));}
tabf(nn) = for (n=1, nn, print(row(n)););
lista(nn) = for (n=1, nn, v = row(n); for (j=1, #v, print1(v[j], ", "));); \\ Michel Marcus, Jun 25 2016
A306607
The bottom entry in the difference table of the binary digits of n.
Original entry on oeis.org
0, 1, 1, 0, 1, 2, -1, 0, 1, 0, 4, 3, -2, -3, 1, 0, 1, 2, -3, -2, 7, 8, 3, 4, -3, -2, -7, -6, 3, 4, -1, 0, 1, 0, 6, 5, -9, -10, -4, -5, 11, 10, 16, 15, 1, 0, 6, 5, -4, -5, 1, 0, -14, -15, -9, -10, 6, 5, 11, 10, -4, -5, 1, 0, 1, 2, -5, -4, 16, 17, 10, 11, -19
Offset: 0
For n = 42:
- the binary representation of 42 is "101010",
- the corresponding difference table is:
0 1 0 1 0 1
1 -1 1 -1 1
-2 2 -2 2
4 -4 4
-8 8
16
- hence a(42) = 16.
-
f:= proc(n) local L;
L:= convert(n,base,2);
while nops(L) > 1 do
L:= L[2..-1]-L[1..-2]
od;
op(L)
end proc:
map(f, [$0..100]); # Robert Israel, Mar 07 2019
-
a[n_] := NestWhile[Differences, Reverse[IntegerDigits[n, 2]], Length[#] > 1 &][[1]]; Array[a, 100, 0] (* Amiram Eldar, Mar 08 2019 *)
-
a(n) = if (n, my (v=Vecrev(binary(n))); while (#v>1, v=vector(#v-1, k, (v[k+1]-v[k]))); v[1], 0)
-
a(n) = my(b = binary(n), s = -1); sum(i = 1, #b, s=-s; binomial(#b-1, i-1) * b[i] * s) \\ David A. Corneth, Mar 07 2019
A193671
Numbers such that the last of the differences of divisors is > 0.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19, 21, 23, 25, 27, 29, 30, 31, 32, 33, 35, 37, 39, 41, 42, 43, 44, 45, 47, 49, 51, 52, 53, 54, 55, 56, 57, 59, 61, 64, 65, 66, 67, 68, 69, 71, 72, 73, 75, 76, 77, 78, 79, 81, 83, 85, 87, 88, 89, 90, 91
Offset: 1
Comments