cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 41 results. Next

A299475 a(n) is the number of vertices in the diagram of partitions of n (see example).

Original entry on oeis.org

1, 4, 7, 10, 16, 22, 34, 46, 67, 91, 127, 169, 232, 304, 406, 529, 694, 892, 1156, 1471, 1882, 2377, 3007, 3766, 4726, 5875, 7309, 9031, 11155, 13696, 16813, 20527, 25048, 30430, 36931, 44650, 53932, 64912, 78046, 93556, 112015, 133750, 159523, 189784, 225526, 267403, 316675, 374263, 441820, 520576, 612679
Offset: 0

Views

Author

Omar E. Pol, Feb 11 2018

Keywords

Comments

For n >= 1, A299474(n) is the number of edges and A000041(n) is the number of regions in the mentioned diagram (see example and Euler's formula).

Examples

			Construction of a modular table of partitions in which a(n) is the number of vertices of the diagram after n-th stage (n = 1..6):
--------------------------------------------------------------------------------
n ........:   1     2       3         4           5             6     (stage)
a(n)......:   4     7      10        16          22            34     (vertices)
A299474(n):   4     8      12        20          28            44     (edges)
A000041(n):   1     2       3         5           7            11     (regions)
--------------------------------------------------------------------------------
r     p(n)
--------------------------------------------------------------------------------
.             _    _ _    _ _ _    _ _ _ _    _ _ _ _ _    _ _ _ _ _ _
1 .... 1 ....|_|  |_| |  |_| | |  |_| | | |  |_| | | | |  |_| | | | | |
2 .... 2 .........|_ _|  |_ _| |  |_ _| | |  |_ _| | | |  |_ _| | | | |
3 .... 3 ................|_ _ _|  |_ _ _| |  |_ _ _| | |  |_ _ _| | | |
4                                 |_ _|   |  |_ _|   | |  |_ _|   | | |
5 .... 5 .........................|_ _ _ _|  |_ _ _ _| |  |_ _ _ _| | |
6                                            |_ _ _|   |  |_ _ _|   | |
7 .... 7 ....................................|_ _ _ _ _|  |_ _ _ _ _| |
8                                                         |_ _|   |   |
9                                                         |_ _ _ _|   |
10                                                        |_ _ _|     |
11 .. 11 .................................................|_ _ _ _ _ _|
.
Apart from the axis x, the r-th horizontal line segment has length A141285(r), equaling the largest part of the r-th region of the diagram.
Apart from the axis y, the r-th vertical line segment has length A194446(r), equaling the number of parts in the r-th region of the diagram.
The total number of parts equals the sum of largest parts.
Note that every diagram contains all previous diagrams.
An infinite diagram is a table of all partitions of all positive integers.
		

Crossrefs

Programs

  • PARI
    a(n) = if (n==0, 1, 1+3*numbpart(n)); \\ Michel Marcus, Jul 15 2018

Formula

a(0) = 1; a(n) = 1 + 3*A000041(n), n >= 1.
a(n) = A299474(n) - A000041(n) + 1, n >= 1 (Euler's formula).

A211026 Number of segments needed to draw (on the infinite square grid) a diagram of regions and partitions of n.

Original entry on oeis.org

4, 6, 8, 12, 16, 24, 32, 46, 62, 86, 114, 156, 204, 272, 354, 464, 596, 772, 982, 1256, 1586, 2006, 2512, 3152, 3918, 4874, 6022, 7438, 9132, 11210, 13686, 16700, 20288, 24622, 29768, 35956, 43276, 52032, 62372, 74678, 89168, 106350
Offset: 1

Views

Author

Omar E. Pol, Oct 29 2012

Keywords

Comments

On the infinite square grid the diagram of regions of the set of partitions of n is represented by a rectangle with base = n and height = A000041(n). The rectangle contains n shells. Each shell contains regions. Each row of a region is a part. Each part of size k contains k cells. The number of regions equals the number of partitions of n (see illustrations in the links section). For a minimalist version see A139582. For the definition of "region of n" see A206437.

Crossrefs

Formula

a(n) = 2*A000041(n) + 2 = 2*A052810(n) = A139582(n) + 2.

Extensions

a(18) corrected by Georg Fischer, Apr 11 2024

A228109 Height after n-th step of an infinite staircase which is the lower part of a structure whose upper part is the infinite Dyck path of A228110.

Original entry on oeis.org

0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 2, 1, 2, 1, 0, -1, 0, -1, 0, 1, 2, 1, 2, 3, 4, 3, 4, 3, 2, 1, 0, -1, 0, -1, 0, 1, 0, 1, 2, 1, 2, 3, 2, 3, 4, 5, 4, 5, 6, 7, 6, 5, 6, 5, 4, 5, 4, 3, 2, 1, 0, -1
Offset: 0

Views

Author

Omar E. Pol, Aug 13 2013

Keywords

Comments

The master diagram of regions of the set of partitions of all positive integers is a total dissection of the first quadrant of the square grid in which the j-th horizontal line segments has length A141285(j) and the j-th vertical line segment has length A194446(j). For the definition of "region" see A206437. The first A000041(k) regions of the diagram represent the set of partitions of k in colexicographic order (see A211992). The length of the j-th horizontal line segment equals the largest part of the j-th partition of k and equals the largest part of the j-th region of the diagram. The length of the j-th vertical line segment (which is the line segment ending in row j) equals the number of parts in the j-th region.
For k = 5, the diagram 1 represents the partitions of 5. The diagram 2 shows separately the boundary segments southwest sides of the first seven regions of the diagram 1, see below:
.
j Diagram 1 Diagram 2
7 | _ | | _
6 | _| | | _ |
5 | | | | |
4 | |_ | | | |_ |
3 | | | | | | |
2 | | | | | | | | |
1 |||_||| | | | | |_
.
. 1 2 3 4 5
.
a(n) is the height after n-th step of an infinite staircase which is the lower part of a diagram of regions of the set of partitions of all positive integers. The upper part of the diagram is the infinite Dyck path mentioned in A228110. The diagram shows the shape of the successive regions of the set of partitions of all positive integers. The area of the n-th region is A186412(n).
For the height of the peaks and the valleys in the infinite Dyck path see A229946.

Examples

			Illustration of initial terms (n = 1..53):
5
4                                                      /
3                                 /\/\                /
2                                /    \            /\/
1                   /\/\      /\/      \        /\/
0          /\    /\/    \    /          \    /\/
-1 \/\/\/\/  \/\/        \/\/            \/\/
-2
The diagram shows the Dyck pack mentioned in A228110 together with the staircase illustrated above. The area of the n-th region is equal to A186412(n).
.
7...................................
.                                  /\
5.....................            /  \                /\
.                    /\          /    \          /\  / /
3...........        /  \        / /\/\ \        /  \/ /
2......    /\      /    \    /\/ /    \ \      /   /\/
1...  /\  /  \  /\/ /\/\ \  / /\/      \ \  /\/ /\/
0  /\/  \/ /\ \/ /\/    \ \/ /          \ \/ /\/
-1 \/\/\/\/  \/\/        \/\/            \/\/
.
Region:
.   1  2    3   4     5      6      7       8    9   10
		

Crossrefs

A228110 Height after n-th step of the infinite Dyck path in which the k-th ascending line segment has A141285(k) steps and the k-th descending line segment has A194446(k) steps, n >= 0, k >= 1.

Original entry on oeis.org

0, 1, 0, 1, 2, 1, 0, 1, 2, 3, 2, 1, 0, 1, 2, 1, 2, 3, 4, 5, 4, 3, 2, 1, 0, 1, 2, 3, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 1, 2, 3, 4, 5, 4, 3, 4, 5, 6, 5, 6, 7, 8, 9, 10, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 2, 3, 4, 5, 6, 7, 6, 5, 6, 7, 8, 9, 8, 9, 10, 11, 12, 13, 14, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
Offset: 0

Views

Author

Omar E. Pol, Aug 10 2013

Keywords

Comments

The master diagram of regions of the set of partitions of all positive integers is a total dissection of the first quadrant of the square grid in which the j-th horizontal line segments has length A141285(j) and the j-th vertical line segment has length A194446(j). For the definition of "region" see A206437. The first A000041(k) regions of the diagram represent the set of partitions of k in colexicographic order (see A211992). The length of the j-th horizontal line segment equals the largest part of the j-th partition of k and equals the largest part of the j-th region of the diagram. The length of the j-th vertical line segment (which is the line segment ending in row j) equals the number of parts in the j-th region.
For k = 7, the diagram 1 represents the partitions of 7. The diagram 2 is a minimalist version of the structure which does not contain the axes [X, Y]. See below:
.
. j Diagram 1 Partitions Diagram 2
. _ _ _ _
. 15 | _ | 7 _ |
. 14 | _ | | 4+3 _ | |
. 13 | _ | | 5+2 _ | |
. 12 | _| |_ | 3+2+2 _| |_ |
. 11 | _ | | 6+1 _ | |
. 10 | _| | | 3+3+1 _ | | |
. 9 | | | | 4+2+1 | | |
. 8 | |_ | | | 2+2+2+1 |_ | | |
. 7 | _ | | | 5+1+1 _ | | |
. 6 | _| | | | 3+2+1+1 _ | | | |
. 5 | | | | | 4+1+1+1 | | | |
. 4 | |_ | | | | 2+2+1+1+1 |_ | | | |
. 3 | | | | | | 3+1+1+1+1 | | | | |
. 1 |||_|||_|_| 1+1+1+1+1+1+1 | | | | | | |
.
. 1 2 3 4 5 6 7
.
The second diagram has the property that if the number of regions is also the number of partitions of k so the sum of the lengths of all horizontal line segment equals the sum of the lengths of all vertical line segments and equals A006128(k), for k >= 1.
Also the diagram has the property that it can be transformed in a Dyck path (see example).
The sequence gives the height of the infinite Dyck path after n-th step.
The absolute values of the first differences give A000012.
For the height of the peaks and the valleys in the infinite Dyck path see A229946.
Q: Is this infinite Dyck path a fractal?

Examples

			Illustration of initial terms (n = 1..59):
.
11 ...........................................................
.                                                            /
.                                                           /
.                                                          /
7 ..................................                      /
.                                  /\                    /
5 ....................            /  \                /\/
.                    /\          /    \          /\  /
3 ..........        /  \        /      \        /  \/
2 .....    /\      /    \    /\/        \      /
1 ..  /\  /  \  /\/      \  /            \  /\/
.  /\/  \/    \/          \/              \/
.
Note that the j-th largest peak between two valleys at height 0 is also the partition number A000041(j).
Written as an irregular triangle in which row k has length 2*A138137(k), the sequence begins:
0,1;
0,1,2,1;
0,1,2,3,2,1;
0,1,2,1,2,3,4,5,4,3,2,1;
0,1,2,3,2,3,4,5,6,7,6,5,4,3,2,1;
0,1,2,1,2,3,4,5,4,3,4,5,6,5,6,7,8,9,10,11,10,9,8,7,6,5,4,3,2,1;
0,1,2,3,2,3,4,5,6,7,6,5,6,7,8,9,8,9,10,11,12,13,14,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1;
...
		

Crossrefs

Column 1 is A000004. Both column 2 and the right border are in A000012. Both columns 3 and 5 are in A007395.

A228348 Triangle of regions and compositions of the positive integers (see Comments lines for definition).

Original entry on oeis.org

1, 2, 1, 1, 0, 0, 3, 2, 1, 1, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 4, 3, 2, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Omar E. Pol, Aug 21 2013

Keywords

Comments

Triangle read by rows in which row n lists the A006519(n) elements of the row A001511(n) of triangle A065120 followed by A129760(n) zeros, n >= 1.
The equivalent sequence for integer partitions is A193870.

Examples

			----------------------------------------------------------
.             Diagram                Triangle
Compositions    of            of compositions (rows)
of 5          regions          and regions (columns)
----------------------------------------------------------
.            _ _ _ _ _
5           |_        |                                 5
1+4         |_|_      |                               1 4
2+3         |_  |     |                             2 0 3
1+1+3       |_|_|_    |                           1 1 0 3
3+2         |_    |   |                         3 0 0 0 2
1+2+2       |_|_  |   |                       1 2 0 0 0 2
2+1+2       |_  | |   |                     2 0 1 0 0 0 2
1+1+1+2     |_|_|_|_  |                   1 1 0 1 0 0 0 2
4+1         |_      | |                 4 0 0 0 0 0 0 0 1
1+3+1       |_|_    | |               1 3 0 0 0 0 0 0 0 1
2+2+1       |_  |   | |             2 0 2 0 0 0 0 0 0 0 1
1+1+2+1     |_|_|_  | |           1 1 0 2 0 0 0 0 0 0 0 1
3+1+1       |_    | | |         3 0 0 0 1 0 0 0 0 0 0 0 1
1+2+1+1     |_|_  | | |       1 2 0 0 0 1 0 0 0 0 0 0 0 1
2+1+1+1     |_  | | | |     2 0 1 0 0 0 1 0 0 0 0 0 0 0 1
1+1+1+1+1   |_|_|_|_|_|   1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1
.
For the positive integer k consider the first 2^(k-1) rows of triangle, as shown below. The positive terms of the n-th row are the parts of the n-th region of the diagram of regions of the set of compositions of k. The positive terms of the n-th diagonal are the parts of the n-th composition of k, with compositions in colexicographic order.
Triangle begins:
1;
2,1;
1,0,0;
3,2,1,1;
1,0,0,0,0;
2,1,0,0,0,0;
1,0,0,0,0,0,0;
4,3,2,2,1,1,1,1;
1,0,0,0,0,0,0,0,0;
2,1,0,0,0,0,0,0,0,0;
1,0,0,0,0,0,0,0,0,0,0;
3,2,1,1,0,0,0,0,0,0,0,0;
1,0,0,0,0,0,0,0,0,0,0,0,0;
2,1,0,0,0,0,0,0,0,0,0,0,0,0;
1,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
5,4,3,3,2,2,2,2,1,1,1,1,1,1,1,1;
...
		

Crossrefs

Mirror of A228347. Column 1 is A001511. Right border gives A036987. Also right border gives A209229, n >= 1. Positive terms give A228350.

A229946 Height of the peaks and the valleys in the Dyck path whose j-th ascending line segment has A141285(j) steps and whose j-th descending line segment has A194446(j) steps.

Original entry on oeis.org

0, 1, 0, 2, 0, 3, 0, 2, 1, 5, 0, 3, 2, 7, 0, 2, 1, 5, 3, 6, 5, 11, 0, 3, 2, 7, 5, 9, 8, 15, 0, 2, 1, 5, 3, 6, 5, 11, 7, 12, 11, 15, 14, 22, 0, 3, 2, 7, 5, 9, 8, 15, 11, 14, 13, 19, 17, 22, 21, 30, 0, 2, 1, 5, 3, 6, 5, 11, 7, 12, 11, 15, 14, 22, 15, 19, 18, 25, 23, 29, 28, 33, 32, 42, 0
Offset: 0

Views

Author

Omar E. Pol, Nov 03 2013

Keywords

Comments

Also 0 together the alternating sums of A220517.
The master diagram of regions of the set of partitions of all positive integers is a total dissection of the first quadrant of the square grid in which the j-th horizontal line segments has length A141285(j) and the j-th vertical line segment has length A194446(j). For the definition of "region" see A206437. The first A000041(k) regions of the diagram represent the set of partitions of k in colexicographic order (see A211992). The length of the j-th horizontal line segment equals the largest part of the j-th partition of k and equals the largest part of the j-th region of the diagram. The length of the j-th vertical line segment (which is the line segment ending in row j) equals the number of parts in the j-th region.
For k = 7, the diagram 1 represents the partitions of 7. The diagram 2 is a minimalist version of the structure which does not contain the axes [X, Y]. See below:
.
. j Diagram 1 Partitions Diagram 2
. _ _ _ _
. 15 | _ | 7 _ |
. 14 | _ | | 4+3 _ | |
. 13 | _ | | 5+2 _ | |
. 12 | _| |_ | 3+2+2 _| |_ |
. 11 | _ | | 6+1 _ | |
. 10 | _| | | 3+3+1 _ | | |
. 9 | | | | 4+2+1 | | |
. 8 | |_ | | | 2+2+2+1 |_ | | |
. 7 | _ | | | 5+1+1 _ | | |
. 6 | _| | | | 3+2+1+1 _ | | | |
. 5 | | | | | 4+1+1+1 | | | |
. 4 | |_ | | | | 2+2+1+1+1 |_ | | | |
. 3 | | | | | | 3+1+1+1+1 | | | | |
. 1 |||_|||_|_| 1+1+1+1+1+1+1 | | | | | | |
.
. 1 2 3 4 5 6 7
.
The second diagram has the property that if the number of regions is also the number of partitions of k so the sum of the lengths of all horizontal line segment equals the sum of the lengths of all vertical line segments and equals A006128(k), for k >= 1.
Also the diagram has the property that it can be transformed in a Dyck path (see example).
The height of the peaks and the valleys of the infinite Dyck path give this sequence.
Q: Is this Dyck path a fractal?

Examples

			Illustration of initial terms (n = 0..21):
.                                                             11
.                                                             /
.                                                            /
.                                                           /
.                                   7                      /
.                                   /\                 6  /
.                     5            /  \           5    /\/
.                     /\          /    \          /\  / 5
.           3        /  \     3  /      \        /  \/
.      2    /\   2  /    \    /\/        \   2  /   3
.   1  /\  /  \  /\/      \  / 2          \  /\/
.   /\/  \/    \/ 1        \/              \/ 1
.  0 0   0     0           0               0
.
Note that the k-th largest peak between two valleys at height 0 is also A000041(k) and the next term is always 0.
.
Written as an irregular triangle in which row k has length 2*A187219(k), k >= 1, the sequence begins:
0,1;
0,2;
0,3;
0,2,1,5;
0,3,2,7;
0,2,1,5,3,6,5,11;
0,3,2,7,5,9,8,15;
0,2,1,5,3,6,5,11,7,12,11,15,14,22;
0,3,2,7,5,9,8,15,11,14,13,19,17,22,21,30;
0,2,1,5,3,6,5,11,7,12,11,15,14,22,15,19,18,25,23,29,28,33,32,42;
...
		

Crossrefs

Column 1 is A000004. Right border gives A000041 for the positive integers.

Formula

a(0) = 0; a(n) = a(n-1) + (-1)^(n-1)*A220517(n), n >= 1.

A230440 Triangle read by rows in which row n lists A000041(n-1) 1's followed by the list of partitions of n that do not contain 1 as a part in colexicographic order.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 1, 1, 2, 2, 4, 1, 1, 1, 1, 1, 3, 2, 5, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 4, 2, 3, 3, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 2, 5, 2, 4, 3, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 2, 2, 3, 3, 2, 6, 2, 5, 3, 4, 4, 8
Offset: 1

Views

Author

Omar E. Pol, Oct 18 2013

Keywords

Comments

The n-th row of triangle lists the parts of the n-th section of the set of partitions of any integer >= n. For the definition of "section" see A135010.

Examples

			Illustration of initial terms (row = 1..6). The table shows the six sections of the set of partitions of 6 in three ways. Note that before the dissection, the set of partitions was in colexicographic order, see A211992. More generally, in a master model, the six sections of the set of partitions of 6 also can be interpreted as the first six sections of the set of partitions of any integer >= 6.
---------------------------------------------------------
n  j     Diagram          Parts              Parts
---------------------------------------------------------
.         _
1  1     |_|              1;                 1;
.           _
2  1      _| |              1,                 1,
2  2     |_ _|              2;               2;
.             _
3  1         | |              1,                 1,
3  2      _ _| |              1,               1,
3  3     |_ _ _|              3;             3;
.               _
4  1           | |              1,                 1,
4  2           | |              1,               1,
4  3      _ _ _| |              1,             1,
4  4     |_ _|   |            2,2,           2,2,
4  5     |_ _ _ _|              4;           4;
.                 _
5  1             | |              1,                 1,
5  2             | |              1,               1,
5  3             | |              1,             1,
5  4             | |              1,             1,
5  5      _ _ _ _| |              1,           1,
5  6     |_ _ _|   |            3,2,         3,2,
5  7     |_ _ _ _ _|              5;         5;
.                   _
6  1               | |              1,                 1,
6  2               | |              1,               1,
6  3               | |              1,             1,
6  4               | |              1,             1,
6  5               | |              1,           1,
6  6               | |              1,           1,
6  7      _ _ _ _ _| |              1,         1,
6  8     |_ _|   |   |          2,2,2,       2,2,2,
6  9     |_ _ _ _|   |            4,2,       4,2,
6  10    |_ _ _|     |            3,3,       3,3,
6  11    |_ _ _ _ _ _|              6;       6;
...
Triangle begins:
[1];
[1],[2];
[1],[1],[3];
[1],[1],[1],[2,2],[4];
[1],[1],[1],[1],[1],[3,2],[5];
[1],[1],[1],[1],[1],[1],[1],[2,2,2],[4,2],[3,3],[6];
...
		

Crossrefs

Positive terms of A228716.
Row n has length A138137(n).
Row sums give A138879.
Right border gives A000027.

A233968 Number of steps between two valleys at height 0 in the infinite Dyck path in which the k-th ascending line segment has A141285(k) steps and the k-th descending line segment has A194446(k) steps, k >= 1.

Original entry on oeis.org

2, 4, 6, 12, 16, 30, 38, 64, 84, 128, 166, 248, 314, 448, 576, 790, 1004, 1358, 1708, 2264, 2844, 3694, 4614, 5936, 7354, 9342, 11544, 14502, 17816, 22220, 27144, 33584, 40878, 50192, 60828, 74276, 89596, 108778, 130772, 157918, 189116, 227374
Offset: 1

Views

Author

Omar E. Pol, Jan 14 2014

Keywords

Comments

Also first differences of A211978.

Examples

			Illustration of initial terms as a dissection of a minimalist diagram of regions of the set of partitions of n, for n = 1..6:
.                                         _ _ _ _ _ _
.                                         _ _ _      |
.                                         _ _ _|_    |
.                                         _ _    |   |
.                             _ _ _ _ _      |   |   |
.                             _ _ _    |             |
.                   _ _ _ _        |   |             |
.                   _ _    |           |             |
.           _ _ _      |   |           |             |
.     _ _        |         |           |             |
. _      |       |         |           |             |
.  |     |       |         |           |             |
.
. 2    4      6       12          16          30
.
Also using the elements from the above diagram we can draw an infinite Dyck path in which the n-th odd-indexed segment has A141285(n) up-steps and the n-th even-indexed segment has A194446(n) down-steps. Note that the n-th largest peak between two valleys at height 0 is also the partition number A000041(n).
7..................................
.                                 /\
5....................            /  \                /\
.                   /\          /    \          /\  /
3..........        /  \        /      \        /  \/
2.....    /\      /    \    /\/        \      /
1..  /\  /  \  /\/      \  /            \  /\/
0 /\/  \/    \/          \/              \/
.  2, 4,   6,       12,           16,...
.
		

Crossrefs

Formula

a(n) = 2*(A006128(n) - A006128(n-1)) = 2*A138137(n).

A299473 a(n) = 3*p(n), where p(n) is the number of partitions of n.

Original entry on oeis.org

3, 3, 6, 9, 15, 21, 33, 45, 66, 90, 126, 168, 231, 303, 405, 528, 693, 891, 1155, 1470, 1881, 2376, 3006, 3765, 4725, 5874, 7308, 9030, 11154, 13695, 16812, 20526, 25047, 30429, 36930, 44649, 53931, 64911, 78045, 93555, 112014, 133749, 159522, 189783, 225525, 267402, 316674, 374262, 441819, 520575, 612678
Offset: 0

Views

Author

Omar E. Pol, Feb 10 2018

Keywords

Comments

For n >= 1, a(n) is also the number of vertices in the minimalist diagram of partitions of n, in which A139582(n) is the number of line segments and A000041(n) is the number of open regions (see example).

Examples

			Construction of a minimalist version of a modular table of partitions in which a(n) is the number of vertices of the diagram after n-th stage (n = 1..6):
-----------------------------------------------------------------------------------
n.........:    1     2       3         4           5           6   (stage)
A000041(n):    1     2       3         5           7          11   (open regions)
A139582(n):    2     4       6        10          14          22   (line segments)
a(n)......:    3     6       9        15          21          33   (vertices)
-----------------------------------------------------------------------------------
r     p(n)
-----------------------------------------------------------------------------------
.
1 .... 1 .... _|   _| |   _| | |   _| | | |   _| | | | |   _| | | | | |
2 .... 2 ......... _ _|   _ _| |   _ _| | |   _ _| | | |   _ _| | | | |
3 .... 3 ................ _ _ _|   _ _ _| |   _ _ _| | |   _ _ _| | | |
4                                  _ _|   |   _ _|   | |   _ _|   | | |
5 .... 5 ......................... _ _ _ _|   _ _ _ _| |   _ _ _ _| | |
6                                             _ _ _|   |   _ _ _|   | |
7 .... 7 .................................... _ _ _ _ _|   _ _ _ _ _| |
8                                                          _ _|   |   |
9                                                          _ _ _ _|   |
10                                                         _ _ _|     |
11 .. 11 ................................................. _ _ _ _ _ _|
.
The r-th horizontal line segment has length A141285(r).
The r-th vertical line segment has length A194446(r).
An infinite diagram is a minimalist table of all partitions of all positive integers.
		

Crossrefs

k times partition numbers: A000041 (k=1), A139582 (k=2), this sequence (k=3), A299474 (k=4).

Formula

a(n) = 3*A000041(n) = A000041(n) + A139582(n).
a(n) = A299475(n) - 1, n >= 1.

A299774 Irregular triangle read by rows in which row n lists the indices of the partitions into equal parts in the list of colexicographically ordered partitions of n.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 4, 5, 1, 7, 1, 8, 10, 11, 1, 15, 1, 16, 21, 22, 1, 27, 30, 1, 31, 41, 42, 1, 56, 1, 57, 69, 73, 76, 77, 1, 101, 1, 102, 134, 135, 1, 160, 172, 176, 1, 177, 221, 230, 231, 1, 297, 1, 298, 353, 380, 384, 385, 1, 490, 1, 491, 604, 615, 626, 627, 1
Offset: 1

Views

Author

Omar E. Pol, Mar 29 2018

Keywords

Comments

Note that n is one of the partitions of n into equal parts.
If n is even then row n ending in [p(n) - 1, p(n)], where p(n) = A000041(n).
T(n,k) > p(n - 1), if 1 < k <= A000005(n).
Removing the 1's then all terms of the sequence are in increasing order.
If n is even then row n starts with [1, p(n - 1) + 1]. - David A. Corneth and Omar E. Pol, Aug 26 2018

Examples

			Triangle begins:
  1;
  1,   2;
  1,   3;
  1,   4,   5;
  1,   7;
  1,   8,  10,  11;
  1,  15;
  1,  16,  21,  22;
  1,  27,  30;
  1,  31,  41,  42;
  1,  56;
  1,  57,  69,  73,  76,  77;
  1, 101;
  1, 102, 134, 135;
  1, 160, 172, 176;
  ...
For n = 6 the partitions of 6 into equal parts are [1, 1, 1, 1, 1, 1], [2, 2, 2], [3, 3] and [6]. Then we have that in the list of colexicographically ordered partitions of 6 these partitions are in the rows 1, 8, 10 and 11 respectively as shown below, so the 6th row of the triangle is [1, 8, 10, 11].
-------------------------------------------------------------
   p      Diagram        Partitions of 6
-------------------------------------------------------------
        _ _ _ _ _ _
   1   |_| | | | | |    [1, 1, 1, 1, 1, 1]  <--- equal parts
   2   |_ _| | | | |    [2, 1, 1, 1, 1]
   3   |_ _ _| | | |    [3, 1, 1, 1]
   4   |_ _|   | | |    [2, 2, 1, 1]
   5   |_ _ _ _| | |    [4, 1, 1]
   6   |_ _ _|   | |    [3, 2, 1]
   7   |_ _ _ _ _| |    [5, 1]
   8   |_ _|   |   |    [2, 2, 2]  <--- equal parts
   9   |_ _ _ _|   |    [4, 2]
  10   |_ _ _|     |    [3, 3]  <--- equal parts
  11   |_ _ _ _ _ _|    [6]  <--- equal parts
.
		

Crossrefs

Row n has length A000005(n).
Right border gives A000041, n >= 1.
Column 1 gives A000012.
Records give A317296.
Cf. A211992 (partitions in colexicographic order).

Programs

  • PARI
    row(n) = {if(n == 1, return([1])); my(nd = numdiv(n), res = vector(nd)); res[1] = 1; res[nd] = numbpart(n); if(nd > 2, t = nd - 1; p = vecsort(partitions(n)); forstep(i = #p - 1, 2, -1, if(p[i][1] == p[i][#p[i]], res[t] = i; t--; if(t==1, return(res)))), return(res))} \\ David A. Corneth, Aug 17 2018

Extensions

Terms a(46) and beyond from David A. Corneth, Aug 16 2018
Previous Showing 21-30 of 41 results. Next