A006635 a(n) = 4*binomial(4*n+11, n)/(n+4).
1, 12, 114, 1012, 8775, 75516, 649264, 5593068, 48336171, 419276660, 3650774820, 31907617560, 279871768995, 2463161027292, 21747225841440, 192575673551584, 1710009515037060, 15223466050169520, 135853465827080970, 1215067013768834100, 10890252031152078585
Offset: 0
References
- H. M. Finucan, Some decompositions of generalized Catalan numbers, pp. 275-293 of Combinatorial Mathematics IX. Proc. Ninth Australian Conference (Brisbane, August 1981). Ed. E. J. Billington, S. Oates-Williams and A. P. Street. Lecture Notes Math., 952. Springer-Verlag, 1982.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Simon Plouffe, Approximations of generating functions and a few conjectures, Master's Thesis, UQAM 1992; arXiv:0911.4975 [math.NT], 2009.
Programs
-
Magma
A006635:= func< n | 4*Binomial(4*n+11,n)/(n+4) >; [A006635(n): n in [0..40]]; // G. C. Greubel, Sep 02 2025
-
Mathematica
terms = 20; g[] = 0; Do[g[x] = 1 + x g[x]^4 + O[x]^terms, terms]; CoefficientList[g[x]^12, x] (* Jean-François Alcover, Oct 07 2018, after Sean A. Irvine *) Table[4*Binomial[4*n+11,n]/(n+4), {n,0,40}] (* G. C. Greubel, Sep 02 2025 *)
-
SageMath
def A006635(n): return 4*binomial(4*n+11,n)//(n+4) print([A006635(n) for n in range(41)]) # G. C. Greubel, Sep 02 2025
Formula
G.f.: 4F3([3,7/2,15/4,13/4], [5,14/3,13/3], 256*x/27). - Simon Plouffe, Master's thesis, UQAM 1992
G.f.: g^12 where g is the g.f. of A002293. - Sean A. Irvine, May 25 2017
a(n) = 4*binomial(4*n+11, n)/(n+4). - G. C. Greubel, Sep 02 2025
Extensions
More terms from Sean A. Irvine, May 25 2017
New name by G. C. Greubel, Sep 02 2025
Comments