cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 64 results. Next

A115255 "Correlation triangle" of central binomial coefficients A000984.

Original entry on oeis.org

1, 2, 2, 6, 5, 6, 20, 14, 14, 20, 70, 46, 41, 46, 70, 252, 160, 134, 134, 160, 252, 924, 574, 466, 441, 466, 574, 924, 3432, 2100, 1672, 1534, 1534, 1672, 2100, 3432, 12870, 7788, 6118, 5506, 5341, 5506, 6118, 7788, 12870, 48620, 29172, 22692, 20152, 19174
Offset: 0

Views

Author

Paul Barry, Jan 18 2006

Keywords

Comments

Row sums are A033114. Diagonal sums are A115256. T(2n,n) is A115257. Corresponds to the triangle of antidiagonals of the correlation matrix of the sequence array for C(2n,n).
Let s=(1,2,6,20,...), (central binomial coefficients), and let T be the infinite square matrix whose n-th row is formed by putting n-1 zeros before the terms of s. Let T' be the transpose of T. Then A115255 represents the matrix product M=T'*T. M is the self-fusion matrix of s, as defined at A193722. See A203005 for characteristic polynomials of principal submatrices of M, with interlacing zeros. - Clark Kimberling, Dec 27 2011

Examples

			Triangle begins:
  1;
  2, 2;
  6, 5, 6;
  20, 14, 14, 20;
  70, 46, 41, 46, 70;
  252, 160, 134, 134, 160, 252;
Northwest corner (square format):
  1    2    6    20    70
  2    5    14   46    160
  6    14   41   134   466
  20   46   134  441   1534
		

Crossrefs

Programs

  • Mathematica
    s[k_] := Binomial[2 k - 2, k - 1];
    U = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[s[k], {k, 1, 15}]];
    L = Transpose[U]; M = L.U; TableForm[M]
    m[i_, j_] := M[[i]][[j]]; (* A115255 in square format *)
    Flatten[Table[m[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]]
    f[n_] := Sum[m[i, n], {i, 1, n}] + Sum[m[n, j], {j, 1, n - 1}]; Table[f[n], {n, 1, 12}]
    Table[Sqrt[f[n]], {n, 1, 12}]  (* A006134 *)
    Table[m[1, j], {j, 1, 12}]     (* A000984 *)
    Table[m[j, j], {j, 1, 12}]     (* A115257 *)
    Table[m[j, j + 1], {j, 1, 12}] (* 2*A082578 *)
    (* Clark Kimberling, Dec 27 2011 *)

Formula

G.f.: 1/(sqrt(1-4*x)*sqrt(1-4*x*y)*(1-x^2*y)) (format due to Christian G. Bower).
T(n, k) = Sum_{j=0..n} [j<=k]*C(2*k-2*j, k-j)*[j<=n-k]*C(2*n-2*k-2*j, n-k-j).

A203001 Symmetric matrix based on A007598, by antidiagonals.

Original entry on oeis.org

1, 1, 1, 4, 2, 4, 9, 5, 5, 9, 25, 13, 18, 13, 25, 64, 34, 41, 41, 34, 64, 169, 89, 113, 99, 113, 89, 169, 441, 233, 290, 266, 266, 290, 233, 441, 1156, 610, 765, 689, 724, 689, 765, 610, 1156, 3025, 1597, 1997, 1811, 1866, 1866, 1811, 1997, 1597, 3025
Offset: 1

Views

Author

Clark Kimberling, Dec 27 2011

Keywords

Comments

Let s=A007598 (squared Fibonacci numbers), and let T be the infinite square matrix whose n-th row is formed by putting n-1 zeros before the terms of s. Let T' be the transpose of T. Then A203001 represents the matrix product M=T'*T. M is the self-fusion matrix of s, as defined at A193722. See A203002 for characteristic polynomials of principal submatrices of M, with interlacing zeros.

Examples

			Northwest corner:
1...1...4....9....25....64
1...2...5....13...34....89
4...5...18...41...113...290
9...13..41...99...266...724
		

Crossrefs

Programs

  • Mathematica
    s[k_] := Fibonacci[k]^2;
    U = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[s[k], {k, 1, 15}]];
    L = Transpose[U]; M = L.U; TableForm[M]
    m[i_, j_] := M[[i]][[j]];
    Flatten[Table[m[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]]
    f[n_] := Sum[m[i, n], {i, 1, n}] + Sum[m[n, j], {j, 1, n - 1}]
    Table[f[n], {n, 1, 12}]
    Table[Sqrt[f[n]], {n, 1, 12}]   (* A001654 *)
    Table[m[1, j], {j, 1, 12}]      (* A007598 *)
    Table[m[2, j], {j, 1, 12}]      (* A001519 *)
    Table[m[j, j], {j, 1, 12}]      (* A005969 *)

A204004 Symmetric matrix based on f(i,j) = max{2i+j-2,i+2j-2}, by antidiagonals.

Original entry on oeis.org

1, 3, 3, 5, 4, 5, 7, 6, 6, 7, 9, 8, 7, 8, 9, 11, 10, 9, 9, 10, 11, 13, 12, 11, 10, 11, 12, 13, 15, 14, 13, 12, 12, 13, 14, 15, 17, 16, 15, 14, 13, 14, 15, 16, 17, 19, 18, 17, 16, 15, 15, 16, 17, 18, 19, 21, 20, 19, 18, 17, 16, 17, 18, 19, 20, 21, 23, 22, 21, 20, 19, 18
Offset: 1

Views

Author

Clark Kimberling, Jan 09 2012

Keywords

Comments

A204004 represents the matrix M given by f(i,j)=max{2i+j,i+2j}for i>=1 and j>=1. See A204005 for characteristic polynomials of principal submatrices of M, with interlacing zeros.
General case A206772. Let m be natural number. Table T(n,k)=max{m*n+k-m,n+m*k-m} read by antidiagonals.
For m=1 the result is A002024,
for m=2 the result is A204004,
for m=3 the result is A204008,
for m=4 the result is A206772. - Boris Putievskiy, Jan 24 2013

Examples

			Northwest corner:
  1,  3,  5,  7,  9
  3,  4,  6,  8, 10
  5,  6,  7,  9, 11
  7,  8,  9, 10, 12
		

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := Max[2 i + j - 2, 2 j + i - 2];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[6]] (* 6x6 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
    {n, 1, 12}, {i, 1, n}]]  (* A204004 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]   (* A204005 *)
    TableForm[Table[c[n], {n, 1, 10}]]

Formula

From Boris Putievskiy, Jan 24 2013: (Start)
For the general case, a(n) = m*A002024(n) + (m-1)*max{-A002260(n),-A004736(n)}.
a(n) = m*(t+1) + (m-1)*max{t*(t+1)/2-n,n-(t*t+3*t+4)/2}, where t=floor((-1+sqrt(8*n-7))/2).
For m=2, a(n) = 2*(t+1) + max{t*(t+1)/2-n,n-(t*t+3*t+4)/2}, where t=floor((-1+sqrt(8*n-7))/2). (End)

A204158 Symmetric matrix based on f(i,j)=max(3i-2j, 3j-2i), by antidiagonals.

Original entry on oeis.org

1, 4, 4, 7, 2, 7, 10, 5, 5, 10, 13, 8, 3, 8, 13, 16, 11, 6, 6, 11, 16, 19, 14, 9, 4, 9, 14, 19, 22, 17, 12, 7, 7, 12, 17, 22, 25, 20, 15, 10, 5, 10, 15, 20, 25, 28, 23, 18, 13, 8, 8, 13, 18, 23, 28, 31, 26, 21, 16, 11, 6, 11, 16, 21, 26, 31, 34, 29, 24, 19, 14, 9, 9, 14
Offset: 1

Views

Author

Clark Kimberling, Jan 12 2012

Keywords

Comments

A204158 represents the matrix M given by f(i,j)=max(3i-2j, 3j-2i) for i>=1 and j>=1. See A204159 for characteristic polynomials of principal submatrices of M, with interlacing zeros. See A204016 for a guide to other choices of M.

Examples

			Northwest corner:
1....4....7....10...13
4....2....5....8....11
7....5....3....6....9
10...8....6....4....7
		

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := Max[3 i - 2 j, 3 j - 2 i];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[8]] (* 8x8 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 1, 15}, {i, 1, n}]]   (* A204158 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]                  (* A204159 *)
    TableForm[Table[c[n], {n, 1, 10}]]

A202452 Lower triangular Fibonacci matrix, by SW antidiagonals.

Original entry on oeis.org

1, 1, 0, 2, 1, 0, 3, 1, 0, 0, 5, 2, 1, 0, 0, 8, 3, 1, 0, 0, 0, 13, 5, 2, 1, 0, 0, 0, 21, 8, 3, 1, 0, 0, 0, 0, 34, 13, 5, 2, 1, 0, 0, 0, 0, 55, 21, 8, 3, 1, 0, 0, 0, 0, 0, 89, 34, 13, 5, 2, 1, 0, 0, 0, 0, 0, 144, 55, 21, 8, 3, 1, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Clark Kimberling, Dec 19 2011

Keywords

Examples

			Northwest corner:
1...0...0...0...0...0...0...0...0
1...1...0...0...0...0...0...0...0
2...1...1...0...0...0...0...0...0
3...2...1...1...0...0...0...0...0
5...3...2...1...1...0...0...0...0
		

Crossrefs

Programs

  • Mathematica
    n = 12;
    Q = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[Fibonacci[k], {k, 1, n}]];
    P = Transpose[Q]; F = P.Q;
    Flatten[Table[P[[i]][[k + 1 - i]], {k, 1, n}, {i, 1, k}]] (* A202451 as a sequence *)
    Flatten[Table[Q[[i]][[k + 1 - i]], {k, 1, n}, {i, 1, k}]] (* A202452 as a sequence *)
    Flatten[Table[F[[i]][[k + 1 - i]], {k, 1, n}, {i, 1, k}]] (* A202453 as a sequence *)
    TableForm[Q]  (* A202451, upper triangular Fibonacci array *)
    TableForm[P]  (* A202452, lower triangular Fibonacci array *)
    TableForm[F]  (* A202453, Fibonacci self-fusion matrix *)
    TableForm[FactorInteger[F]]

Formula

Column n consists of n-1 zeros followed by the Fibonacci sequence (1,1,2,3,5,8,...).

A203949 Symmetric matrix based on (1,1,0,1,1,0,1,1,0,...), by antidiagonals.

Original entry on oeis.org

1, 1, 1, 0, 2, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 0, 2, 1, 1, 2, 0, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 0, 2, 1, 1, 4, 1, 1, 2, 0, 1, 1, 1, 3, 2, 2, 3, 1, 1, 1, 1, 1, 2, 2, 2, 4, 2, 2, 2, 1, 1, 0, 2, 1, 1, 4, 2, 2, 4, 1, 1, 2, 0, 1, 1, 1, 3, 2, 2, 5, 2, 2, 3, 1, 1, 1, 1, 1, 2, 2, 2, 4, 3, 3
Offset: 1

Views

Author

Clark Kimberling, Jan 08 2012

Keywords

Comments

Let s be the periodic sequence (1,1,0,1,1,0,...) and let T be the infinite square matrix whose n-th row is formed by putting n-1 zeros before the terms of s. Let T' be the transpose of T. Then A203949 represents the matrix product M=T'*T. M is the self-fusion matrix of s, as defined at A193722. See A203950 for characteristic polynomials of principal submatrices of M, with interlacing zeros.

Examples

			Northwest corner:
1 1 0 1 1 0 1 1 0 1
1 2 1 1 2 1 1 2 1 1
0 1 2 1 1 2 1 1 2 1
1 1 1 3 2 1 3 2 1 3
1 2 1 2 4 2 2 4 2 2
0 1 2 1 2 4 2 2 4 2
1 1 1 3 2 2 5 3 2 5
		

Crossrefs

Programs

  • Mathematica
    t = {1, 1, 0}; t1 = Flatten[{t, t, t, t, t, t, t, t, t}];
    s[k_] := t1[[k]];
    U = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[
       Table[s[k], {k, 1, 15}]];
    L = Transpose[U]; M = L.U; TableForm[M] (* A203949 *)
    m[i_, j_] := M[[i]][[j]];
    Flatten[Table[m[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]]

A203951 Symmetric matrix based on (1,0,0,0,1,0,0,0,...), by antidiagonals.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 0, 2, 0, 2, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Clark Kimberling, Jan 08 2012

Keywords

Comments

Let s be the periodic sequence (1,0,0,0,1,0,0,0,...) and let T be the infinite square matrix whose n-th row is formed by putting n-1 zeros before the terms of s. Let T' be the transpose of T. Then A203951 represents the matrix product M=T'*T. M is the self-fusion matrix of s, as defined at A193722. See A203952 for characteristic polynomials of principal submatrices of M, with interlacing zeros.

Examples

			Northwest corner:
1 0 0 0 1 0 0 0 1 0
0 1 0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 0 0 0
0 0 0 1 0 0 0 1 0 0
1 0 0 0 2 0 0 0 2 0
0 1 0 0 0 2 0 0 0 2
0 0 1 0 0 0 2 0 0 0
0 0 0 1 0 0 0 2 0 0
1 0 0 0 2 0 0 0 3 0
		

Crossrefs

Programs

  • Mathematica
    t = {1, 0, 0, 0}; t1 = Flatten[{t, t, t, t, t, t, t, t}];
    f[k_] := t1[[k]];
    U[n_] :=
      NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[
       Table[f[k], {k, 1, n}]];
    L[n_] := Transpose[U[n]];
    p[n_] := CharacteristicPolynomial[L[n].U[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]  (* A203952 *)

A203990 Symmetric matrix based on f(i,j) = (i+j)*min(i,j), by antidiagonals.

Original entry on oeis.org

2, 3, 3, 4, 8, 4, 5, 10, 10, 5, 6, 12, 18, 12, 6, 7, 14, 21, 21, 14, 7, 8, 16, 24, 32, 24, 16, 8, 9, 18, 27, 36, 36, 27, 18, 9, 10, 20, 30, 40, 50, 40, 30, 20, 10, 11, 22, 33, 44, 55, 55, 44, 33, 22, 11, 12, 24, 36, 48, 60, 72, 60, 48, 36, 24, 12, 13, 26, 39, 52, 65, 78, 78, 65, 52, 39, 26, 13
Offset: 1

Views

Author

Clark Kimberling, Jan 09 2012

Keywords

Comments

This sequence represents the matrix M given by f(i,j) = (i+j)*min{i,j} for i >= 1 and j >= 1.
See A203991 for characteristic polynomials of principal submatrices of M, with interlacing zeros.

Examples

			Northwest corner:
  2,  3,  4,  5,  6,  7
  3,  8, 10, 12, 14, 16
  4, 10, 18, 21, 24, 27
  5, 12, 21, 32, 36, 40
		

Crossrefs

Programs

  • GAP
    Flat(List([1..15], n-> List([1..n], k-> (n+1)*Minimum(n-k+1,k) ))); # G. C. Greubel, Jul 23 2019
  • Magma
    [(n+1)*Min(n-k+1,k): k in [1..n], n in [1..15]]; // G. C. Greubel, Jul 23 2019
    
  • Mathematica
    (* First program *)
    f[i_, j_] := (i + j) Min[i, j];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[6]] (* 6x6 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]]  (* A203990 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]              (* A203991 *)
    TableForm[Table[c[n], {n, 1, 10}]]
    (* Second program *)
    Table[(n+1)*Min[n-k+1, k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Jul 23 2019 *)
  • PARI
    for(n=1,15, for(k=1,n, print1((n+1)*min(n-k+1,k), ", "))) \\ G. C. Greubel, Jul 23 2019
    
  • Sage
    [[(n+1)*min(n-k+1,k) for n in (1..n)] for n in (1..15)] # G. C. Greubel, Jul 23 2019
    

A204022 Symmetric matrix based on f(i,j) = max(2i-1, 2j-1), by antidiagonals.

Original entry on oeis.org

1, 3, 3, 5, 3, 5, 7, 5, 5, 7, 9, 7, 5, 7, 9, 11, 9, 7, 7, 9, 11, 13, 11, 9, 7, 9, 11, 13, 15, 13, 11, 9, 9, 11, 13, 15, 17, 15, 13, 11, 9, 11, 13, 15, 17, 19, 17, 15, 13, 11, 11, 13, 15, 17, 19, 21, 19, 17, 15, 13, 11, 13, 15, 17, 19, 21, 23, 21, 19, 17, 15, 13, 13, 15, 17, 19, 21, 23
Offset: 1

Views

Author

Clark Kimberling, Jan 11 2012

Keywords

Comments

This sequence represents the matrix M given by f(i,j) = max(2i-1, 2j-1) for i >= 1 and j >= 1. See A204023 for characteristic polynomials of principal submatrices of M, with interlacing zeros. See A204016 for a guide to other choices of M.

Examples

			Northwest corner:
  1 3 5 7 9
  3 3 5 7 9
  5 5 5 7 9
  7 7 7 7 9
  9 9 9 9 9
		

Crossrefs

Programs

  • GAP
    Flat(List([1..12], n-> List([1..n], k-> Maximum(2*k-1, 2*(n-k)+1) ))); # G. C. Greubel, Jul 23 2019
    
  • Magma
    [[Max(2*k-1, 2*(n-k)+1): k in [1..n]]: n in [1..12]]; // G. C. Greubel, Jul 23 2019
    
  • Mathematica
    (* First program *)
    f[i_, j_] := Max[2 i - 1, 2 j - 1];
    m[n_] := Table[f[i, j], {i, n}, {j, n}]
    TableForm[m[6]] (* 6 X 6 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 15}, {i, n}]]                (* A204022 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 10}]]]
    Table[c[n], {n, 12}]
    Flatten[%]                         (* A204023 *)
    TableForm[Table[c[n], {n, 10}]]
    (* Second program *)
    Table[Max[2*k-1, 2*(n-k)+1], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Jul 23 2019 *)
  • PARI
    {T(n, k) = max(2*k-1, 2*(n-k)+1)};
    for(n=1, 12, for(k=1, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Jul 23 2019
    
  • Python
    from math import isqrt
    def A204022(n): return (m:=isqrt(n<<3)+1>>1)+abs(m**2-(n<<1)+1) # Chai Wah Wu, Jun 08 2025
  • Sage
    [[max(2*k-1, 2*(n-k)+1) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jul 23 2019
    

Formula

From Ridouane Oudra, May 27 2019: (Start)
a(n) = t + |t^2-2n+1|, where t = floor(sqrt(2n-1)+1/2).
a(n) = A209302(2n-1).
a(n) = A002024(n) + |A002024(n)^2-2n+1|.
a(n) = t + |t^2-2n+1|, where t = floor(sqrt(2n)+1/2). (End)

A204026 Symmetric matrix based on f(i,j)=min(F(i+1),F(j+1)), where F=A000045 (Fibonacci numbers), by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 3, 2, 1, 1, 2, 3, 3, 2, 1, 1, 2, 3, 5, 3, 2, 1, 1, 2, 3, 5, 5, 3, 2, 1, 1, 2, 3, 5, 8, 5, 3, 2, 1, 1, 2, 3, 5, 8, 8, 5, 3, 2, 1, 1, 2, 3, 5, 8, 13, 8, 5, 3, 2, 1, 1, 2, 3, 5, 8, 13, 13, 8, 5, 3, 2, 1, 1, 2, 3, 5, 8, 13, 21, 13, 8, 5, 3, 2, 1, 1, 2, 3, 5, 8
Offset: 1

Views

Author

Clark Kimberling, Jan 11 2012

Keywords

Comments

A204026 represents the matrix M given by f(i,j)=min(F(i+1),F(j+1)) for i>=1 and j>=1. See A204027 for characteristic polynomials of principal submatrices of M, with interlacing zeros. See A204016 for a guide to other choices of M.

Examples

			Northwest corner:
1 1 1 1 1 1
1 2 2 2 2 2
1 2 3 3 3 3
1 2 3 5 5 5
1 2 3 5 8 8
1 2 3 5 8 13
		

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := Min[Fibonacci[i + 1], Fibonacci[j + 1]]
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[6]] (* 6x6 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 1, 15}, {i, 1, n}]]  (* A204026 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]                 (* A204027 *)
    TableForm[Table[c[n], {n, 1, 10}]]
Previous Showing 11-20 of 64 results. Next